These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 38611257)
1. Mechanically Tough and Conductive Hydrogels Based on Gelatin and Z-Gln-Gly Generated by Microbial Transglutaminase. Chen Z; Zhang R; Zhao S; Li B; Wang S; Lu W; Zhu D Polymers (Basel); 2024 Apr; 16(7):. PubMed ID: 38611257 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional Conductive Double-Network Hydrogel Sensors for Multiscale Motion Detection and Temperature Monitoring. Zhao R; Zhao Z; Song S; Wang Y ACS Appl Mater Interfaces; 2023 Dec; 15(51):59854-59865. PubMed ID: 38095585 [TBL] [Abstract][Full Text] [Related]
3. Tough, conductive hydrogels based on gelatin and oxidized sodium carboxymethyl cellulose as flexible sensors. Qin X; Zhao Z; Deng J; Zhao Y; Liang S; Yi Y; Li J; Wei Y Carbohydr Polym; 2024 Jul; 335():121920. PubMed ID: 38616070 [TBL] [Abstract][Full Text] [Related]
4. Strong, Tough, and Anti-Swelling Supramolecular Conductive Hydrogels for Amphibious Motion Sensors. Sun Z; Dong C; Chen B; Li W; Hu H; Zhou J; Li C; Huang Z Small; 2023 Nov; 19(44):e2303612. PubMed ID: 37394709 [TBL] [Abstract][Full Text] [Related]
5. Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor. Chen D; Zhao X; Wei X; Zhang J; Wang D; Lu H; Jia P ACS Appl Mater Interfaces; 2020 Nov; 12(47):53247-53256. PubMed ID: 33185423 [TBL] [Abstract][Full Text] [Related]
6. Carbon Nanotubes/Hydrophobically Associated Hydrogels as Ultrastretchable, Highly Sensitive, Stable Strain, and Pressure Sensors. Qin Z; Sun X; Yu Q; Zhang H; Wu X; Yao M; Liu W; Yao F; Li J ACS Appl Mater Interfaces; 2020 Jan; 12(4):4944-4953. PubMed ID: 31912722 [TBL] [Abstract][Full Text] [Related]
7. High stretchable and tough xylan-g-gelatin hydrogel via the synergy of chemical cross-linking and salting out for strain sensors. Zhu J; Xu H; Hu Q; Yang Y; Ni S; Peng F; Jin X Int J Biol Macromol; 2024 Mar; 261(Pt 1):129759. PubMed ID: 38281523 [TBL] [Abstract][Full Text] [Related]
8. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123 [TBL] [Abstract][Full Text] [Related]
9. Highly stretchable, tough and conductive chitin nanofiber composite hydrogel as a wearable sensor. Li X; Jiang L; Yan M; Bi H; Wang Q Int J Biol Macromol; 2023 Jul; 242(Pt 1):124780. PubMed ID: 37172700 [TBL] [Abstract][Full Text] [Related]
10. An extremely tough and ionic conductive natural-polymer-based double network hydrogel. Sun X; Liang Y; Ye L; Liang H J Mater Chem B; 2021 Sep; 9(37):7751-7759. PubMed ID: 34586150 [TBL] [Abstract][Full Text] [Related]
11. Tannic acid modified antifreezing gelatin organohydrogel for low modulus, high toughness, and sensitive flexible strain sensor. Zaidi SFA; Kim YA; Saeed A; Sarwar N; Lee NE; Yoon DH; Lim B; Lee JH Int J Biol Macromol; 2022 Jun; 209(Pt B):1665-1675. PubMed ID: 35487373 [TBL] [Abstract][Full Text] [Related]
12. Ionically Conductive Hydrogel with Fast Self-Recovery and Low Residual Strain as Strain and Pressure Sensors. Sun X; Yao F; Wang C; Qin Z; Zhang H; Yu Q; Zhang H; Dong X; Wei Y; Li J Macromol Rapid Commun; 2020 Jul; 41(13):e2000185. PubMed ID: 32500629 [TBL] [Abstract][Full Text] [Related]
13. Transparent, Conductive Hydrogels with High Mechanical Strength and Toughness. Xu X; He C; Luo F; Wang H; Peng Z Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207446 [TBL] [Abstract][Full Text] [Related]
14. A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe Fu H; Wang B; Li J; Xu J; Li J; Zeng J; Gao W; Chen K Mater Horiz; 2022 May; 9(5):1412-1421. PubMed ID: 35322839 [TBL] [Abstract][Full Text] [Related]
15. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. Zhang X; Chen J; He J; Bai Y; Zeng H J Colloid Interface Sci; 2021 Mar; 585():420-432. PubMed ID: 33268058 [TBL] [Abstract][Full Text] [Related]
16. Ultrastrong and Tough Urushiol-Based Ionic Conductive Double Network Hydrogels as Flexible Strain Sensors. Lin F; Zhu Y; You Z; Li W; Chen J; Zheng X; Zheng G; Song Z; You X; Xu Y Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571113 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of a High-Strength, Tough, Swelling-Resistant, Conductive Hydrogel via Ion Cross-Linking, Directional Freeze-Drying, and Rehydration. Luo J; Wang H; Wang J; Chen Y; Li C; Zhong K; Xiang J; Jia P ACS Biomater Sci Eng; 2023 May; 9(5):2694-2705. PubMed ID: 37000674 [TBL] [Abstract][Full Text] [Related]
18. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232 [TBL] [Abstract][Full Text] [Related]
19. Facile Soaking Strategy Toward Simultaneously Enhanced Conductivity and Toughness of Self-Healing Composite Hydrogels Through Constructing Multiple Noncovalent Interactions. Wang S; Guo G; Lu X; Ji S; Tan G; Gao L ACS Appl Mater Interfaces; 2018 Jun; 10(22):19133-19142. PubMed ID: 29756768 [TBL] [Abstract][Full Text] [Related]
20. Using chitosan nanofibers to simultaneously improve the toughness and sensing performance of chitosan-based ionic conductive hydrogels. Wang X; Wang B; Liu W; Yu D; Song Z; Li G; Liu X; Wang H; Ge S Int J Biol Macromol; 2024 Mar; 260(Pt 1):129272. PubMed ID: 38211925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]