BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38611274)

  • 1. TEMPO-Oxidized Nanocellulose Films Modified by Tea Saponin Derived from
    Jiang N; Hu Y; Cheng Y
    Polymers (Basel); 2024 Apr; 16(7):. PubMed ID: 38611274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy.
    Fukuzumi H; Saito T; Iwamoto S; Kumamoto Y; Ohdaira T; Suzuki R; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):4057-62. PubMed ID: 21995723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of TEMPO-oxidized cellulose nanofibril length on film properties.
    Fukuzumi H; Saito T; Isogai A
    Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite.
    Bideau B; Bras J; Saini S; Daneault C; Loranger E
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():977-84. PubMed ID: 27612793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocellulose Film Properties Tunable by Controlling Degree of Fibrillation of TEMPO-Oxidized Cellulose.
    Wakabayashi M; Fujisawa S; Saito T; Isogai A
    Front Chem; 2020; 8():37. PubMed ID: 32117870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces.
    Shimizu M; Saito T; Fukuzumi H; Isogai A
    Biomacromolecules; 2014 Nov; 15(11):4320-5. PubMed ID: 25310181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate.
    Soeta H; Fujisawa S; Saito T; Berglund L; Isogai A
    ACS Appl Mater Interfaces; 2015 May; 7(20):11041-6. PubMed ID: 25946413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective permeation of hydrogen gas using cellulose nanofibril film.
    Fukuzumi H; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1705-9. PubMed ID: 23594396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TEMPO-oxidised nanocellulose hydrogels and self-standing films derived from bacterial cellulose nanopaper.
    Yang KY; Wloch D; Lee KY
    RSC Adv; 2021 Aug; 11(45):28352-28360. PubMed ID: 35480772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patternable Nanocellulose/Ti
    Jin X; Wang S; Sang C; Yue Y; Xu X; Mei C; Xiao H; Lou Z; Han J
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35040-35052. PubMed ID: 35861436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups.
    Shimizu M; Fukuzumi H; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():99-104. PubMed ID: 23597708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization.
    Yang Q; Saito T; Berglund LA; Isogai A
    Nanoscale; 2015 Nov; 7(42):17957-63. PubMed ID: 26465589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly tough and transparent layered composites of nanocellulose and synthetic silicate.
    Wu CN; Yang Q; Takeuchi M; Saito T; Isogai A
    Nanoscale; 2014 Jan; 6(1):392-9. PubMed ID: 24201761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocellulose from recycled indigo-dyed denim fabric and its application in composite films.
    Zhong T; Dhandapani R; Liang D; Wang J; Wolcott MP; Van Fossen D; Liu H
    Carbohydr Polym; 2020 Jul; 240():116283. PubMed ID: 32475567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose Nanofibers from Olive Tree Pruning as Food Packaging Additive of a Biodegradable Film.
    Sánchez-Gutiérrez M; Bascón-Villegas I; Espinosa E; Carrasco E; Pérez-Rodríguez F; Rodríguez A
    Foods; 2021 Jul; 10(7):. PubMed ID: 34359453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating layer-by-layer assembled sodium alginate-chitosan film properties through incorporation of cellulose nanocrystals with different surface charge densities.
    Sun R; Zhu J; Wu H; Wang S; Li W; Sun Q
    Int J Biol Macromol; 2021 Jun; 180():510-522. PubMed ID: 33745975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TEMPO-Oxidized Cellulose Nanofibril Films Incorporating Graphene Oxide Nanofillers.
    Kim Y; Kim YT; Wang X; Min B; Park SI
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing chitin nanocrystals for flexible packaging coatings.
    Zhong T; Wolcott MP; Liu H; Wang J
    Carbohydr Polym; 2019 Dec; 226():115276. PubMed ID: 31582071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.