These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38611506)

  • 1. Genome-Wide Association Analysis Uncovers Genes Associated with Resistance to Head Smut Pathotype 5 in Senegalese Sorghum Accessions.
    Ahn E; Prom LK; Park S; Hu Z; Magill CW
    Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Genome-Wide Association Study of Senegalese Sorghum Seedlings Responding to Pathotype 5 of
    Ahn E; Fall C; Prom LK; Magill C
    Plants (Basel); 2022 Nov; 11(21):. PubMed ID: 36365456
    [No Abstract]   [Full Text] [Related]  

  • 3. Genetic and Pathogenic Variability among Isolates of
    Prom LK; Ahn EJS; Perumal R; Isakeit TS; Odvody GN; Magill CW
    J Fungi (Basel); 2024 Jan; 10(1):. PubMed ID: 38248970
    [No Abstract]   [Full Text] [Related]  

  • 4. Genome-Wide Association Study of Seed Morphology Traits in Senegalese Sorghum Cultivars.
    Ahn E; Botkin J; Ellur V; Lee Y; Poudel K; Prom LK; Magill C
    Plants (Basel); 2023 Jun; 12(12):. PubMed ID: 37375969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association analysis for response of Senegalese sorghum accessions to Texas isolates of anthracnose.
    Ahn E; Prom LK; Hu Z; Odvody G; Magill C
    Plant Genome; 2021 Jul; 14(2):e20097. PubMed ID: 33900689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome Analysis Reveals Contrasting Plant Responses of
    Poloni A; Garde R; Dittiger LD; Heidrich T; Müller C; Drechsler F; Zhao Y; Mazumdar T; Schirawski J
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Trait Genome-Wide Association Studies of
    Ahn E; Prom LK; Magill C
    Pathogens; 2023 May; 12(6):. PubMed ID: 37375469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymerase Chain Reaction-Assisted Evaluation of the Efficacy of Seed-Treatment Prevention of
    Zhang Z; Fan J; Feng M; Qiu H; Hu A
    Front Microbiol; 2021; 12():745144. PubMed ID: 34777292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host specificity in Sporisorium reilianum is determined by distinct mechanisms in maize and sorghum.
    Poloni A; Schirawski J
    Mol Plant Pathol; 2016 Jun; 17(5):741-54. PubMed ID: 26419898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut.
    Ahn E; Hu Z; Perumal R; Prom LK; Odvody G; Upadhyaya HD; Magill C
    PLoS One; 2019; 14(5):e0216671. PubMed ID: 31086384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an Infection Assay for Sporisorium reilianum, the Head Smut Pathogen on Sorghum.
    Osorio JA; Frederiksen RA
    Plant Dis; 1998 Nov; 82(11):1232-1236. PubMed ID: 30845411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host specificity of Sporisorium reilianum is tightly linked to generation of the phytoalexin luteolinidin by Sorghum bicolor.
    Zuther K; Kahnt J; Utermark J; Imkampe J; Uhse S; Schirawski J
    Mol Plant Microbe Interact; 2012 Sep; 25(9):1230-7. PubMed ID: 22670753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Large-Scale Genome-Wide Association Analyses of Ethiopian Sorghum Landrace Collection Reveal Loci Associated With Important Traits.
    Girma G; Nida H; Seyoum A; Mekonen M; Nega A; Lule D; Dessalegn K; Bekele A; Gebreyohannes A; Adeyanju A; Tirfessa A; Ayana G; Taddese T; Mekbib F; Belete K; Tesso T; Ejeta G; Mengiste T
    Front Plant Sci; 2019; 10():691. PubMed ID: 31191590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide association study of Senegalese sorghum seedlings responding to a Texas isolate of Colletotrichum sublineola.
    Ahn E; Fall C; Prom LK; Magill C
    Sci Rep; 2022 Jul; 12(1):13025. PubMed ID: 35906277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide association mapping of resistance to the sorghum aphid in Sorghum bicolor.
    Punnuri SM; Ayele AG; Harris-Shultz KR; Knoll JE; Coffin AW; Tadesse HK; Armstrong JS; Wiggins TK; Li H; Sattler S; Wallace JG
    Genomics; 2022 Jul; 114(4):110408. PubMed ID: 35716823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association analysis reveals seed protein loci as determinants of variations in grain mold resistance in sorghum.
    Nida H; Girma G; Mekonen M; Tirfessa A; Seyoum A; Bejiga T; Birhanu C; Dessalegn K; Senbetay T; Ayana G; Tesso T; Ejeta G; Mengiste T
    Theor Appl Genet; 2021 Apr; 134(4):1167-1184. PubMed ID: 33452894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virulence and Molecular Genotyping Studies of Sporisorium reilianum Isolates in Sorghum.
    Prom LK; Perumal R; Erattaimuthu SR; Erpelding JE; Montes N; Odvody GN; Greenwald C; Jin Z; Frederiksen R; Magill CW
    Plant Dis; 2011 May; 95(5):523-529. PubMed ID: 30731955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positively Selected Effector Genes and Their Contribution to Virulence in the Smut Fungus Sporisorium reilianum.
    Schweizer G; Münch K; Mannhaupt G; Schirawski J; Kahmann R; Dutheil JY
    Genome Biol Evol; 2018 Feb; 10(2):629-645. PubMed ID: 29390140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Association Studies of Grain Yield Components in Diverse Sorghum Germplasm.
    Boyles RE; Cooper EA; Myers MT; Brenton Z; Rauh BL; Morris GP; Kresovich S
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.