These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38611800)

  • 41. Structural Basis of Covalent Inhibitory Mechanism of TMPRSS2-Related Serine Proteases by Camostat.
    Sun G; Sui Y; Zhou Y; Ya J; Yuan C; Jiang L; Huang M
    J Virol; 2021 Sep; 95(19):e0086121. PubMed ID: 34160253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autoprocessing and self-activation of the secreted protease CPAF in Chlamydia-infected cells.
    Chen D; Lei L; Flores R; Huang Z; Wu Z; Chai J; Zhong G
    Microb Pathog; 2010 Oct; 49(4):164-73. PubMed ID: 20510344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure-based discovery of small molecule hepsin and HGFA protease inhibitors: Evaluation of potency and selectivity derived from distinct binding pockets.
    Franco FM; Jones DE; Harris PK; Han Z; Wildman SA; Jarvis CM; Janetka JW
    Bioorg Med Chem; 2015 May; 23(10):2328-43. PubMed ID: 25882520
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rottlerin-mediated inhibition of Chlamydia trachomatis growth and uptake of sphingolipids is independent of p38-regulated/activated protein kinase (PRAK).
    Lei L; Li Z; Zhong G
    PLoS One; 2012; 7(9):e44733. PubMed ID: 22970301
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of a secreted Chlamydia protease.
    Shaw AC; Vandahl BB; Larsen MR; Roepstorff P; Gevaert K; Vandekerckhove J; Christiansen G; Birkelund S
    Cell Microbiol; 2002 Jul; 4(7):411-24. PubMed ID: 12102687
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteases--structures, mechanism and inhibitors.
    Powers JC; Odake S; Oleksyszyn J; Hori H; Ueda T; Boduszek B; Kam C
    Agents Actions Suppl; 1993; 42():3-18. PubMed ID: 8356929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adaptive regulation of digestive serine proteases in the larval midgut of Helicoverpa armigera in response to a plant protease inhibitor.
    Kuwar SS; Pauchet Y; Vogel H; Heckel DG
    Insect Biochem Mol Biol; 2015 Apr; 59():18-29. PubMed ID: 25662099
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nafamostat mesylate inhibits chlamydial intracellular growth in cell culture and reduces chlamydial infection in the mouse genital tract.
    Peng L; Zhang H; Hu Z; Zhao Y; Liu S; Chen J
    Microb Pathog; 2020 Oct; 147():104413. PubMed ID: 32712115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anti-chlamydial activities of cell-permeable hydrophobic dipeptide-containing derivatives.
    Itoh R; Soejima T; Hiromatsu K
    J Infect Chemother; 2019 Dec; 25(12):987-994. PubMed ID: 31230920
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chlamydial Infection-Dependent Synthesis of Sphingomyelin as a Novel Anti-Chlamydial Target of Ceramide Mimetic Compounds.
    Kumagai K; Sakai S; Ueno M; Kataoka M; Kobayashi S; Hanada K
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499025
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cleavage of the NF-κB family protein p65/RelA by the chlamydial protease-like activity factor (CPAF) impairs proinflammatory signaling in cells infected with Chlamydiae.
    Christian J; Vier J; Paschen SA; Häcker G
    J Biol Chem; 2010 Dec; 285(53):41320-7. PubMed ID: 21041296
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of capsaicin, an active component of chili pepper, on pathogenic chlamydial growth (Chlamydia trachomatis and Chlamydia pneumoniae) in immortal human epithelial HeLa cells.
    Yamakawa K; Matsuo J; Okubo T; Nakamura S; Yamaguchi H
    J Infect Chemother; 2018 Feb; 24(2):130-137. PubMed ID: 29132924
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance.
    McCoy AJ; Sandlin RC; Maurelli AT
    J Bacteriol; 2003 Feb; 185(4):1218-28. PubMed ID: 12562791
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chlamydial protease-like activity factor--insights into immunity and vaccine development.
    Murthy AK; Guentzel MN; Zhong G; Arulanandam BP
    J Reprod Immunol; 2009 Dec; 83(1-2):179-84. PubMed ID: 19853923
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chlamydia trachomatis outer membrane complex protein B (OmcB) is processed by the protease CPAF.
    Hou S; Lei L; Yang Z; Qi M; Liu Q; Zhong G
    J Bacteriol; 2013 Mar; 195(5):951-7. PubMed ID: 23222729
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways.
    Zhong G
    Front Microbiol; 2011; 2():14. PubMed ID: 21687409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Substituted isocoumarins as inhibitors of complement serine proteases.
    Kam CM; Oglesby TJ; Pangburn MK; Volanakis JE; Powers JC
    J Immunol; 1992 Jul; 149(1):163-8. PubMed ID: 1607651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metalloprotease inhibitors GM6001 and TAPI-0 inhibit the obligate intracellular human pathogen Chlamydia trachomatis by targeting peptide deformylase of the bacterium.
    Balakrishnan A; Patel B; Sieber SA; Chen D; Pachikara N; Zhong G; Cravatt BF; Fan H
    J Biol Chem; 2006 Jun; 281(24):16691-9. PubMed ID: 16565079
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Chlamydia trachomatis Mip-like protein is a lipoprotein.
    Lundemose AG; Rouch DA; Penn CW; Pearce JH
    J Bacteriol; 1993 Jun; 175(11):3669-71. PubMed ID: 8501072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.