These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38611834)
1. Biological Valorization of Lignin-Derived Aromatics in Hydrolysate to Protocatechuic Acid by Engineered Jin X; Li X; Zou L; Zheng Z; Ouyang J Molecules; 2024 Mar; 29(7):. PubMed ID: 38611834 [TBL] [Abstract][Full Text] [Related]
2. Co-upgrading of ethanol-assisted depolymerized lignin: A new biological lignin valorization approach for the production of protocatechuic acid and polyhydroxyalkanoic acid. Nguyen LT; Tran MH; Lee EY Bioresour Technol; 2021 Oct; 338():125563. PubMed ID: 34284296 [TBL] [Abstract][Full Text] [Related]
3. Protocatechuic acid production from lignin-associated phenolics. Upadhyay P; Lali A Prep Biochem Biotechnol; 2021; 51(10):979-984. PubMed ID: 33583338 [TBL] [Abstract][Full Text] [Related]
4. Construction of a p-coumaric and ferulic acid auto-regulatory system in Pseudomonas putida KT2440 for protocatechuate production from lignin-derived aromatics. Li J; Yue C; Wei W; Shang Y; Zhang P; Ye BC Bioresour Technol; 2022 Jan; 344(Pt B):126221. PubMed ID: 34728357 [TBL] [Abstract][Full Text] [Related]
5. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991 [TBL] [Abstract][Full Text] [Related]
6. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Wada A; Prates ÉT; Hirano R; Werner AZ; Kamimura N; Jacobson DA; Beckham GT; Masai E Metab Eng; 2021 Mar; 64():167-179. PubMed ID: 33549838 [TBL] [Abstract][Full Text] [Related]
8. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Notonier S; Werner AZ; Kuatsjah E; Dumalo L; Abraham PE; Hatmaker EA; Hoyt CB; Amore A; Ramirez KJ; Woodworth SP; Klingeman DM; Giannone RJ; Guss AM; Hettich RL; Eltis LD; Johnson CW; Beckham GT Metab Eng; 2021 May; 65():111-122. PubMed ID: 33741529 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid. Li J; Ye BC Bioresour Technol; 2021 Jan; 319():124239. PubMed ID: 33254462 [TBL] [Abstract][Full Text] [Related]
10. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans. Zou L; Ouyang S; Hu Y; Zheng Z; Ouyang J Biotechnol Biofuels; 2021 Nov; 14(1):227. PubMed ID: 34838093 [TBL] [Abstract][Full Text] [Related]
12. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds. Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280 [TBL] [Abstract][Full Text] [Related]
13. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440. Niu W; Willett H; Mueller J; He X; Kramer L; Ma B; Guo J Metab Eng; 2020 May; 59():151-161. PubMed ID: 32130971 [TBL] [Abstract][Full Text] [Related]
14. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Johnson CW; Salvachúa D; Khanna P; Smith H; Peterson DJ; Beckham GT Metab Eng Commun; 2016 Dec; 3():111-119. PubMed ID: 29468118 [TBL] [Abstract][Full Text] [Related]
15. Bioconversion of lignin-derived aromatics into the building block pyridine 2,4-dicarboxylic acid by engineering recombinant Pseudomonas putida strains. Gómez-Álvarez H; Iturbe P; Rivero-Buceta V; Mines P; Bugg TDH; Nogales J; Díaz E Bioresour Technol; 2022 Feb; 346():126638. PubMed ID: 34971782 [TBL] [Abstract][Full Text] [Related]
16. Engineering Pseudomonas putida for improved utilization of syringyl aromatics. Mueller J; Willett H; Feist AM; Niu W Biotechnol Bioeng; 2022 Sep; 119(9):2541-2550. PubMed ID: 35524438 [TBL] [Abstract][Full Text] [Related]
17. Evolution and engineering of pathways for aromatic O-demethylation in Pseudomonas putida KT2440. Bleem AC; Kuatsjah E; Johnsen J; Mohamed ET; Alexander WG; Kellermyer ZA; Carroll AL; Rossi R; Schlander IB; Peabody V GL; Guss AM; Feist AM; Beckham GT Metab Eng; 2024 Jul; 84():145-157. PubMed ID: 38936762 [TBL] [Abstract][Full Text] [Related]
18. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Kohlstedt M; Starck S; Barton N; Stolzenberger J; Selzer M; Mehlmann K; Schneider R; Pleissner D; Rinkel J; Dickschat JS; Venus J; B J H van Duuren J; Wittmann C Metab Eng; 2018 May; 47():279-293. PubMed ID: 29548984 [TBL] [Abstract][Full Text] [Related]
19. Highly Efficient Biosynthesis of Protocatechuic Acid via Recombinant Li J; Fu J; Yue C; Shang Y; Ye BC J Agric Food Chem; 2023 Jul; 71(27):10375-10382. PubMed ID: 37365996 [TBL] [Abstract][Full Text] [Related]
20. Beta-ketoadipic acid and muconolactone production from a lignin-related aromatic compound through the protocatechuate 3,4-metabolic pathway. Okamura-Abe Y; Abe T; Nishimura K; Kawata Y; Sato-Izawa K; Otsuka Y; Nakamura M; Kajita S; Masai E; Sonoki T; Katayama Y J Biosci Bioeng; 2016 Jun; 121(6):652-658. PubMed ID: 26723258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]