BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38611944)

  • 1. Characteristics of Dialdehyde Cellulose Nanofibrils Derived from Cotton Linter Fibers and Wood Fibers.
    Tu Q; Gao W; Zhou J; Wu J; Zeng J; Wang B; Xu J
    Molecules; 2024 Apr; 29(7):. PubMed ID: 38611944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and Rheological Characterization of Cellulose Nanofibrils (CNFs) from Coir Fibers in Comparison to Wood and Cotton.
    Yue D; Qian X
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-based films with high antioxidant and improved water-resistant properties from cellulose nanofibres and lignin nanoparticles.
    Guo L; Li M; Xu Q; Jin L; Wang Y
    Int J Biol Macromol; 2023 Feb; 227():365-372. PubMed ID: 36535358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015; 127():101-9. PubMed ID: 25965462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging.
    Las-Casas B; Arantes V
    Int J Biol Macromol; 2023 Jul; 242(Pt 4):125057. PubMed ID: 37244346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developed Chitosan/Oregano Essential Oil Biocomposite Packaging Film Enhanced by Cellulose Nanofibril.
    Chen S; Wu M; Wang C; Yan S; Lu P; Wang S
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32784925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparison Study on the Characteristics of Nanofibrils Isolated from Fibers and Parenchyma Cells in Bamboo.
    Zhang X; Huang H; Qing Y; Wang H; Li X
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31935802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments.
    Li P; Sirviö JA; Haapala A; Liimatainen H
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2846-2855. PubMed ID: 27997111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticles spontaneously grown on cellulose nanofibrils as a reusable nanozyme for colorimetric detection of cholesterol in human serum.
    Alle M; Bandi R; Sharma G; Dadigala R; Lee SH; Kim JC
    Int J Biol Macromol; 2022 Mar; 201():686-697. PubMed ID: 35104471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the degree of polymerization of cellulose nanofibers by largely preserving native structure of wood fibers.
    Zhou J; Fang Z; Chen K; Cui J; Yang D; Qiu X
    Carbohydr Polym; 2022 Nov; 296():119919. PubMed ID: 36087974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches.
    Qing Y; Sabo R; Zhu JY; Agarwal U; Cai Z; Wu Y
    Carbohydr Polym; 2013 Aug; 97(1):226-34. PubMed ID: 23769541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers.
    Gorur YC; Larsson PA; Wågberg L
    Biomacromolecules; 2020 Apr; 21(4):1480-1488. PubMed ID: 32167304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions.
    Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M
    Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of Cellulose Nanofibrils from Transgenic Trees with Reduced Expression of Cellulose Synthase Interacting 1.
    Jonasson S; Bünder A; Berglund L; Niittylä T; Oksman K
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils.
    Larsson PA; Berglund LA; Wågberg L
    Biomacromolecules; 2014 Jun; 15(6):2218-23. PubMed ID: 24773125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rice straw cellulose nanofibrils reinforced poly(vinyl alcohol) composite films.
    Wang Z; Qiao X; Sun K
    Carbohydr Polym; 2018 Oct; 197():442-450. PubMed ID: 30007633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cogrinding Wood Fibers and Tannins: Surfactant Effects on the Interactions and Properties of Functional Films for Sustainable Packaging Materials.
    Missio AL; Mattos BD; Otoni CG; Gentil M; Coldebella R; Khakalo A; Gatto DA; Rojas OJ
    Biomacromolecules; 2020 May; 21(5):1865-1874. PubMed ID: 32040921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.