These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38612013)

  • 1. Experimental, Computational, and Machine Learning Methods for Prediction of Residual Stresses in Laser Additive Manufacturing: A Critical Review.
    Wu SH; Tariq U; Joy R; Sparks T; Flood A; Liou F
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Artificial Intelligence for Surface Roughness Prediction of Additively Manufactured Components.
    Batu T; Lemu HG; Shimels H
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of the Residual Stress Generation in Metal Additive Manufacturing: Analysis of Cause, Measurement, Effects, and Prevention.
    Bastola N; Jahan MP; Rangasamy N; Rakurty CS
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermomechanical Process Simulation and Experimental Verification for Laser Additive Manufacturing of Inconel
    Zafar MQ; Wang J; Zhang Z; Wu C; Zhao H; Hussain G; Ma N
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and validation of residual deformations in additive manufacturing of metal parts.
    Mayer T; Brändle G; Schönenberger A; Eberlein R
    Heliyon; 2020 May; 6(5):e03987. PubMed ID: 32478189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On Residual Stress Development, Prevention, and Compensation in Metal Additive Manufacturing.
    Carpenter K; Tabei A
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale Robot-Based Polymer and Composite Additive Manufacturing: Failure Modes and Thermal Simulation.
    Akbari S; Johansson J; Johansson E; Tönnäng L; Hosseini S
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Part Deflection Measurements of AM-Bench IN718 3D Build Artifacts.
    Praniewicz M; Fox JC; Tarr J
    Integr Mater Manuf Innov; 2023; 12():. PubMed ID: 38410829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.
    Caiazzo F; Caggiano A
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29562682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation-Based Support Generation for Laser Powder Bed Fusion Processes.
    Boos E; Ihlenfeldt S; Milaev N; Bruns M; Elsner BAM
    3D Print Addit Manuf; 2023 Apr; 10(2):173-182. PubMed ID: 37123515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of residual stresses in thin-walled additively manufactured structures from selective laser melting.
    Ahmed N; Barsoum I; Abu Al-Rub RK
    Heliyon; 2023 Sep; 9(9):e19385. PubMed ID: 37662789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification and Analysis of Residual Stresses in Braking Pedal Produced via Laser-Powder Bed Fusion Additive Manufacturing Technology.
    Fojtík F; Potrok R; Hajnyš J; Ma QP; Kudrna L; Měsíček J
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on the influence of heat treatment on residual stress of TC4 alloy produced by laser additive manufacturing based on laser ultrasonic technique.
    Zhan Y; Xu H; Du W; Liu C
    Ultrasonics; 2021 Aug; 115():106466. PubMed ID: 34020226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Applied to Defect Detection in Powder Spreading Process of Magnetic Material Additive Manufacturing.
    Chen HY; Lin CC; Horng MH; Chang LK; Hsu JH; Chang TW; Hung JC; Lee RM; Tsai MC
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual Stress Formation Mechanisms in Laser Powder Bed Fusion-A Numerical Evaluation.
    Kaess M; Werz M; Weihe S
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Support Structures Optimisation for High-Quality Metal Additive Manufacturing with Laser Powder Bed Fusion: A Numerical Simulation Study.
    Dimopoulos A; Salimi M; Gan TH; Chatzakos P
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Phase Transformations on Scanning Strategy in WAAM Fabrication.
    Ali MH; Han YS
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-based additive manufacturing condition monitoring methods: From measurement to control.
    Lin X; Zhu K; Fuh JYH; Duan X
    ISA Trans; 2022 Jan; 120():147-166. PubMed ID: 33752886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porosity Analysis of Additive Manufactured Parts Using CAQ Technology.
    Pokorný P; Václav Š; Petru J; Kritikos M
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33670918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of Residual Stresses in Laser Additive Manufactured AlSi10Mg Specimens Using an Ultrasonic Peening Technique.
    Xing X; Duan X; Sun X; Gong H; Wang L; Jiang F
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.