These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38612044)
1. Estimation of the Band Gap of Carbon Nanotube Bundles. Ding Y; Chen JZ Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612044 [TBL] [Abstract][Full Text] [Related]
2. Torsional fracture of carbon nanotube bundles: a reactive molecular dynamics study. Pereira Júnior ML; de Sousa Oliveira T; Monteiro FF; da Cunha WF; de Oliveira Neto PH; Ribeiro Júnior LA Phys Chem Chem Phys; 2022 Jun; 24(24):15068-15074. PubMed ID: 35696995 [TBL] [Abstract][Full Text] [Related]
3. Evidence for metal-semiconductor transitions in twisted and collapsed double-walled carbon nanotubes by scanning tunneling microscopy. Giusca CE; Tison Y; Silva SR Nano Lett; 2008 Oct; 8(10):3350-6. PubMed ID: 18783281 [TBL] [Abstract][Full Text] [Related]
4. Band gap opening and semiconductor-metal phase transition in (n, n) single-walled carbon nanotubes with distinctive boron-nitrogen line defect. Qiu M; Xie Y; Gao X; Li J; Deng Y; Guan D; Ma L; Yuan C Phys Chem Chem Phys; 2016 Feb; 18(6):4643-51. PubMed ID: 26794602 [TBL] [Abstract][Full Text] [Related]
5. Torsional deformation modulation of the electronic structure and optical properties of molybdenum ditelluride systems doped with halogen atoms X (X = F, Cl, Br, I): a first-principles study. Dai Y; Liu G; He J; Ni J; Zhang G J Mol Model; 2023 Nov; 29(11):356. PubMed ID: 37917249 [TBL] [Abstract][Full Text] [Related]
6. Internal stress induced metallization of single-walled carbon nanotubes in a nanotube/glass conducting composite. Balaji S; Debnath R Nanotechnology; 2011 Oct; 22(41):415706. PubMed ID: 21926456 [TBL] [Abstract][Full Text] [Related]
7. Electronic property investigations of single-walled carbon nanotube bundles in situ within a transmission electron microscope: an evaluation. Aslam Z; Abraham M; Brown A; Rand B; Brydson R J Microsc; 2008 Jul; 231(Pt 1):144-55. PubMed ID: 18638198 [TBL] [Abstract][Full Text] [Related]
8. DFT Study of WS Domnin AV; Mikhailov IE; Evarestov RA Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836340 [TBL] [Abstract][Full Text] [Related]
9. Measuring carbon nanotube band gaps through leakage current and excitonic transitions of nanotube diodes. Malapanis A; Jones DA; Comfort E; Lee JU Nano Lett; 2011 May; 11(5):1946-51. PubMed ID: 21469693 [TBL] [Abstract][Full Text] [Related]
10. Band gap modification and photoluminescence enhancement of graphene nanoribbon filled single-walled carbon nanotubes. Chernov AI; Fedotov PV; Lim HE; Miyata Y; Liu Z; Sato K; Suenaga K; Shinohara H; Obraztsova ED Nanoscale; 2018 Feb; 10(6):2936-2943. PubMed ID: 29369315 [TBL] [Abstract][Full Text] [Related]
11. Band gap opening of metallic single-walled carbon nanotubes via noncovalent symmetry breaking. Mastrocinque F; Bullard G; Alatis JA; Albro JA; Nayak A; Williams NX; Kumbhar A; Meikle H; Widel ZXW; Bai Y; Harvey AK; Atkin JM; Waldeck DH; Franklin AD; Therien MJ Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2317078121. PubMed ID: 38466848 [TBL] [Abstract][Full Text] [Related]
12. Bending deformation modulation of the optoelectronic properties of molybdenum ditelluride doped with nonmetallic atoms X (X = B, C, N, O): a first-principles study. Dai Y; Liu G; He J; Yang Z; Zhang G J Mol Model; 2024 Mar; 30(4):94. PubMed ID: 38443609 [TBL] [Abstract][Full Text] [Related]
13. Single walled carbon nanotubes band gap width measurement and the influence of nitrogen doping research. Miao R; Liang Y; Zhou G; Deng Y; Wang L; Deng J; Shao Q Phys Chem Chem Phys; 2024 Jan; 26(3):1616-1624. PubMed ID: 38170636 [TBL] [Abstract][Full Text] [Related]
14. Ab initio study of hydrogen chemisorption in nitrogen-doped carbon nanotubes. Correa JD; Florez E; Mora-Ramos ME Phys Chem Chem Phys; 2016 Sep; 18(36):25663-25670. PubMed ID: 27711503 [TBL] [Abstract][Full Text] [Related]
15. Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes. Soto M; Boyer TA; Biradar S; Ge L; Vajtai R; Elías-Zúñiga A; Ajayan PM; Barrera EV Nanotechnology; 2015 Apr; 26(16):165201. PubMed ID: 25816374 [TBL] [Abstract][Full Text] [Related]
16. Tuning the Optical Properties and Conductivity of Bundles in Networks of Single-Walled Carbon Nanotubes. Mitin D; Vorobyev A; Pavlov A; Berdnikov Y; Mozharov A; Mikhailovskii V; Ramirez B JA; Krasnikov DV; Kopylova DS; Kirilenko DA; Vinnichenko M; Polozkov R; Nasibulin AG; Mukhin I J Phys Chem Lett; 2022 Sep; 13(37):8775-8782. PubMed ID: 36103372 [TBL] [Abstract][Full Text] [Related]
17. Engineering radial deformations in single-walled carbon and boron nitride nanotubes using ultrathin nanomembranes. Zheng M; Zou LF; Wang H; Park C; Ke C ACS Nano; 2012 Feb; 6(2):1814-22. PubMed ID: 22280493 [TBL] [Abstract][Full Text] [Related]
18. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes. Liou KH; Tsou NT; Kang DY Nanoscale; 2015 Oct; 7(39):16222-9. PubMed ID: 26204559 [TBL] [Abstract][Full Text] [Related]
19. Torsional Properties of Bundles with Randomly Packed Carbon Nanotubes. Wei H; Ting HZJ; Gong Y; Lü C; Glukhova OE; Zhan H Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269252 [TBL] [Abstract][Full Text] [Related]
20. Carbon nanotube bundles with tensile strength over 80 GPa. Bai Y; Zhang R; Ye X; Zhu Z; Xie H; Shen B; Cai D; Liu B; Zhang C; Jia Z; Zhang S; Li X; Wei F Nat Nanotechnol; 2018 Jul; 13(7):589-595. PubMed ID: 29760522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]