These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 38612057)
1. Porous High-Entropy Oxide Anode Materials for Li-Ion Batteries: Preparation, Characterization, and Applications. Dong L; Tian Y; Luo C; Zhao W; Qin C; Wang Z Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612057 [TBL] [Abstract][Full Text] [Related]
2. High-entropy oxides: an emerging anode material for lithium-ion batteries. Zou X; Zhang YR; Huang ZP; Yue K; Guo ZH Chem Commun (Camb); 2023 Nov; 59(91):13535-13550. PubMed ID: 37877745 [TBL] [Abstract][Full Text] [Related]
3. Low-Temperature Synthesis of a Porous High-Entropy Transition-Metal Oxide as an Anode for High-Performance Lithium-Ion Batteries. Yang X; Wang H; Song Y; Liu K; Huang T; Wang X; Zhang C; Li J ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35653293 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical Performance of (MgCoNiZn) Lökçü E; Toparli Ç; Anik M ACS Appl Mater Interfaces; 2020 May; 12(21):23860-23866. PubMed ID: 32368889 [TBL] [Abstract][Full Text] [Related]
5. The elemental pegging effect in locally ordered nanocrystallites of high-entropy oxide enables superior lithium storage. Leng H; Zhang P; Wu J; Xu T; Deng H; Yang P; Wang S; Qiu J; Wu Z; Li S Nanoscale; 2023 Dec; 15(47):19139-19147. PubMed ID: 37933578 [TBL] [Abstract][Full Text] [Related]
6. Cycling Reconstructed Hierarchical Nanoporous High-Entropy Oxides with Continuously Increasing Capacity for Li Storage. Ci N; Hu Y; Li Q; Cheng J; Zhang H; Li D; Li K; Reddy KM; Ci L; Xie G; Liu X; Qiu HJ Small Methods; 2024 Aug; 8(8):e2301322. PubMed ID: 38135872 [TBL] [Abstract][Full Text] [Related]
7. High-Entropy Oxides for Rechargeable Batteries. Ran B; Li H; Cheng R; Yang Z; Zhong Y; Qin Y; Yang C; Fu C Adv Sci (Weinh); 2024 Jul; 11(25):e2401034. PubMed ID: 38647393 [TBL] [Abstract][Full Text] [Related]
8. Synergy of cations in high entropy oxide lithium ion battery anode. Wang K; Hua W; Huang X; Stenzel D; Wang J; Ding Z; Cui Y; Wang Q; Ehrenberg H; Breitung B; Kübel C; Mu X Nat Commun; 2023 Mar; 14(1):1487. PubMed ID: 36932071 [TBL] [Abstract][Full Text] [Related]
9. Charge Storage Mechanism in Electrospun Spinel-Structured High-Entropy (Mn Triolo C; Maisuradze M; Li M; Liu Y; Ponti A; Pagot G; Di Noto V; Aquilanti G; Pinna N; Giorgetti M; Santangelo S Small; 2023 Nov; 19(46):e2304585. PubMed ID: 37469201 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Li-Ion Diffusion and Cycling Stability of Ni-Free High-Entropy Spinel Oxide Anodes with High-Concentration Oxygen Vacancies. Xiao B; Wu G; Wang T; Wei Z; Xie Z; Sui Y; Qi J; Wei F; Zhang X; Tang LB; Zheng JC ACS Appl Mater Interfaces; 2023 Jan; 15(2):2792-2803. PubMed ID: 36606677 [TBL] [Abstract][Full Text] [Related]
12. Deciphering Structural Origins of Highly Reversible Lithium Storage in High Entropy Oxides with In Situ Transmission Electron Microscopy. Su L; Ren J; Lu T; Chen K; Ouyang J; Zhang Y; Zhu X; Wang L; Min H; Luo W; Sun Z; Zhang Q; Wu Y; Sun L; Mai L; Xu F Adv Mater; 2023 May; 35(19):e2205751. PubMed ID: 36921344 [TBL] [Abstract][Full Text] [Related]
13. Lithiation Mechanism in High-Entropy Oxides as Anode Materials for Li-Ion Batteries: An Operando XAS Study. Ghigna P; Airoldi L; Fracchia M; Callegari D; Anselmi-Tamburini U; D'Angelo P; Pianta N; Ruffo R; Cibin G; de Souza DO; Quartarone E ACS Appl Mater Interfaces; 2020 Nov; 12(45):50344-50354. PubMed ID: 33124794 [TBL] [Abstract][Full Text] [Related]
14. Kinetically Accelerated Lithium Storage in High-Entropy (LiMgCoNiCuZn)O Enabled By Oxygen Vacancies. Liu X; Xing Y; Xu K; Zhang H; Gong M; Jia Q; Zhang S; Lei W Small; 2022 May; 18(18):e2200524. PubMed ID: 35362260 [TBL] [Abstract][Full Text] [Related]
15. Recent Advances on Heterojunction-Type Anode Materials for Lithium-/Sodium-Ion Batteries. Fu H; Wen Q; Li PY; Wang ZY; He ZJ; Yan C; Mao J; Dai K; Zhang XH; Zheng JC Small Methods; 2022 Dec; 6(12):e2201025. PubMed ID: 36333217 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of Li Julien CM; Mauger A Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542557 [TBL] [Abstract][Full Text] [Related]
17. Se Lin WL; Zhong HY; Huang YE; Lu X; Zhao Y; Zhang JX; Du KZ; Wu XH Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34479214 [TBL] [Abstract][Full Text] [Related]
18. Intergrating Hollow Multishelled Structure and High Entropy Engineering toward Enhanced Mechano-Electrochemical Properties in Lithium Battery. Liu X; Yu Y; Li K; Li Y; Li X; Yuan Z; Li H; Zhang H; Gong M; Xia W; Deng Y; Lei W Adv Mater; 2024 May; 36(19):e2312583. PubMed ID: 38302690 [TBL] [Abstract][Full Text] [Related]
19. "Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure. Wang R; Wang L; Liu R; Li X; Wu Y; Ran F ACS Nano; 2024 Jan; 18(4):2611-2648. PubMed ID: 38221745 [TBL] [Abstract][Full Text] [Related]
20. Elemental Two-Dimensional Materials for Li/Na-Ion Battery Anode Applications. Tian Y; Chen Y; Liu Y; Li H; Dai Z Chem Rec; 2022 Oct; 22(10):e202200123. PubMed ID: 35758546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]