These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38612170)
1. The Gradient Effect on Cyclic Behavior of 316L Stainless Steel in the Ultrasonic Bending Test. Hu Y; Tang S; Liu Y; Li L; Wang C; Wang Q Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612170 [TBL] [Abstract][Full Text] [Related]
2. A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205. Li S; Jiang W; Xie X; Dong Z Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639991 [TBL] [Abstract][Full Text] [Related]
3. Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path. Liu X; Zhang S; Bao Y; Zhang Z; Yue Z Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955297 [TBL] [Abstract][Full Text] [Related]
4. The Characterization of Fatigue Damage of 316L Stainless Steel Parts Formed by Selective Laser Melting with Harmonic Generation Technique. Qiao R; Yan X Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160665 [TBL] [Abstract][Full Text] [Related]
5. Effect of ultrasonic surface impact on the microstructural characterization and mechanical properties of 316L austenitic stainless steel. Zhu J; Zhuang ML; Qi Y; Chen B; Cao X PLoS One; 2024; 19(7):e0307400. PubMed ID: 39052615 [TBL] [Abstract][Full Text] [Related]
6. Microstructure and Nanoindentation Behavior of FeCoNiAlTi High-Entropy Alloy-Reinforced 316L Stainless Steel Composite Fabricated by Selective Laser Melting. Zhang X; Yang D; Jia Y; Wang G Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903136 [TBL] [Abstract][Full Text] [Related]
7. Bending Fatigue Behavior of 316L Stainless Steel up to Very High Cycle Fatigue Regime. Hu Y; Chen Y; He C; Liu Y; Wang Q; Wang C Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126746 [TBL] [Abstract][Full Text] [Related]
8. Effect of Initial Surface Scratches on the Cavitation Erosion Behavior of 316L Stainless Steel Substrates and 316L Stainless Steel Coatings. Lu P; Xu Z; Tian Y; Yang R; Hu K; Li H; Yin Y; Chen X Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837022 [TBL] [Abstract][Full Text] [Related]
9. A Novel Method for Early Fatigue Damage Diagnosis in 316L Stainless Steel Formed by Selective Laser Melting Technology. Yan X; Tang X Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176246 [TBL] [Abstract][Full Text] [Related]
10. An assessment of ultra fine grained 316L stainless steel for implant applications. Muley SV; Vidvans AN; Chaudhari GP; Udainiya S Acta Biomater; 2016 Jan; 30():408-419. PubMed ID: 26518104 [TBL] [Abstract][Full Text] [Related]
11. Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel. Voloskov B; Evlashin S; Dagesyan S; Abaimov S; Akhatov I; Sergeichev I Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722093 [TBL] [Abstract][Full Text] [Related]
12. Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L. Kurdi A; Tabbakh T; Basak AK Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687627 [TBL] [Abstract][Full Text] [Related]
13. Orientation-Dependent Deformation Behavior of 316L Steel Manufactured by Laser Metal Deposition and Casting under Local Scratch and Indentation Load. Pöhl F; Hardes C; Scholz F; Frenzel J Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283856 [TBL] [Abstract][Full Text] [Related]
14. Low friction and high strength of 316L stainless steel tubing for biomedical applications. Amanov A; Lee SW; Pyun YS Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():176-185. PubMed ID: 27987696 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Mechanical and Biological Performance of an Extremely Fine Nanograined 316L Stainless Steel Cell-Substrate Interface Fabricated by Ultrasonic Shot Peening. Yin F; Xu R; Hu S; Zhao K; Yang S; Kuang S; Li Q; Han Q ACS Biomater Sci Eng; 2018 May; 4(5):1609-1621. PubMed ID: 33445318 [TBL] [Abstract][Full Text] [Related]
17. Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM). Wang Z; Yang S; Huang Y; Fan C; Peng Z; Gao Z Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947139 [TBL] [Abstract][Full Text] [Related]
18. Bending Fatigue Behaviour and Fatigue Endurance Limit Prediction of 20Cr2Ni4A Gear Steel after the Ultrasonic Surface Rolling Process. Wang Z; Huang Y; Xing Z; Wang H; Shan D; Xie F; Li J Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066257 [TBL] [Abstract][Full Text] [Related]
19. Effects of Grain Size on Ultrasonic Attenuation in Type 316L Stainless Steel. Wan T; Naoe T; Wakui T; Futakawa M; Obayashi H; Sasa T Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773115 [TBL] [Abstract][Full Text] [Related]
20. The Effect of Severe Shot Peening on Fatigue Life of Laser Powder Bed Fusion Manufactured 316L Stainless Steel. Rautio T; Jaskari M; Gundgire T; Iso-Junno T; Vippola M; Järvenpää A Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]