BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38612201)

  • 1. Effect of Cryogenic Treatments on Hardness, Fracture Toughness, and Wear Properties of Vanadis 6 Tool Steel.
    Yarasu V; Jurci P; Ptacinova J; Dlouhy I; Hornik J
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can Sub-zero Treatment at -75 °C Bring Any Benefits to Tools Manufacturing?
    Kusý M; Rízeková-Trnková L; Krajčovič J; Dlouhý I; Jurči P
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31766375
    [No Abstract]   [Full Text] [Related]  

  • 3. Microstructure, Mechanical and Wear Behaviour of Deep Cryogenically Treated EN 52 Silchrome Valve Steel.
    Saranraj I; Ganesan S; Čepová L; Elangovan M; Beránek L
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Tribological Properties of Powdered Tool Steels M390 and M398 in Contact with Al
    Studeny Z; Krbata M; Dobrocky D; Eckert M; Ciger R; Kohutiar M; Mikus P
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Heat Treatment Parameters on the Modification of Nano Residual Austenite of Low-Carbon Medium-Chromium Steel.
    Wang Y; Wang R; Yu W; Gao Y
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abrasive Wear Behavior of Cryogenically Treated Boron Steel (30MnCrB4) Used for Rotavator Blades.
    Singh TP; Singla AK; Singh J; Singh K; Gupta MK; Ji H; Song Q; Liu Z; Pruncu CI
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotribological behavior of deep cryogenically treated martensitic stainless steel.
    Prieto G; Bakoglidis KD; Tuckart WR; Broitman E
    Beilstein J Nanotechnol; 2017; 8():1760-1768. PubMed ID: 28904837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel.
    Liu H; Fu P; Liu H; Li D
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29642642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cryogenic treatment on wear resistance of Ti-6Al-4V alloy for biomedical applications.
    Gu K; Wang J; Zhou Y
    J Mech Behav Biomed Mater; 2014 Feb; 30():131-9. PubMed ID: 24287307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Austempering of As-Cast Medium Carbon High-Silicon Steel on Wear Resistance.
    Sedlaček M; Klančnik G; Nagode A; Burja J
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryogenic Treatment of Martensitic Steels: Microstructural Fundamentals and Implications for Mechanical Properties and Wear and Corrosion Performance.
    Jurči P; Dlouhý I
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimisation of Thermal Processes with Plasma Nitriding on Vanadis 4 High Speed Steel.
    Alvarez-Antolin F; Gonzalez-Pociño A; Cofiño-Villar A; Alvarez-Perez CH
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of oil-quenching and over-tempering heat treatments on the dry sliding wear behaviours of 25CrMo4 steel.
    Arabacı U
    Heliyon; 2024 Feb; 10(3):e25589. PubMed ID: 38356554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Cryogenic Treatment Process on the Performance of 51CrV4 Steel.
    Chen Z; Jing L; Gao Y; Huang Y; Guo J; Yan X
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructural and Mechanical Evaluation of a Cr-Mo-V Cold-Work Tool Steel Produced via Electron Beam Melting (EBM).
    Botero CA; Şelte A; Ramsperger M; Maistro G; Koptyug A; Bäckström M; Sjöström W; Rännar LE
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Deep Cryogenic Time on Martensite Multi-Level Microstructures and Mechanical Properties in AISI M35 High-Speed Steel.
    Xu G; Huang P; Feng Z; Wei Z; Zu G
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Isothermal Transformation Times below Ms and Tempering on Strength and Toughness of Low-Temperature Bainite in 0.53 C Bainitic Steel.
    Liu E; Li Q; Naseem S; Huang X; Huang W
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32466211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Correlation Between Fracture Toughness and Charpy Impact Energy of Cryogenic Steel Welds.
    An G; Hong S; Park J; Han I
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4921-4925. PubMed ID: 33691891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the Microstructural Evolution of 18Cr2Ni4WA Steel during Vacuum Low-Pressure Carburizing Heat Treatment and Its Effect on Case Hardness.
    Wang B; He Y; Liu Y; Tian Y; You J; Wang Z; Wang G
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32443773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Evolution of a Microstructure during Tempering and Its Influence on the Mechanical Properties of AerMet 100 Steel.
    Wang H; Zhang J; Huang J; Wu C; Zhang X; Lai Z; Liu Y; Zhu J
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.