These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38612391)

  • 21. Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols.
    Yao K; Xu LQ; Wang FQ; Wei DZ
    Metab Eng; 2014 Jul; 24():181-91. PubMed ID: 24831710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient conversion of phytosterols into 4-androstene-3,17-dione and its C1,2-dehydrogenized and 9α-hydroxylated derivatives by engineered Mycobacteria.
    Li X; Chen T; Peng F; Song S; Yu J; Sidoine DN; Cheng X; Huang Y; He Y; Su Z
    Microb Cell Fact; 2021 Aug; 20(1):158. PubMed ID: 34399754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Identification of a new C-23 metabolite in sterol degradation of
    He J; Dong X; Huang Y; Song S; Su Z
    Sheng Wu Gong Cheng Xue Bao; 2023 Nov; 39(11):4550-4562. PubMed ID: 38013183
    [No Abstract]   [Full Text] [Related]  

  • 24. Mycolicibacterium cell factory for the production of steroid-based drug intermediates.
    Zhao A; Zhang X; Li Y; Wang Z; Lv Y; Liu J; Alam MA; Xiong W; Xu J
    Biotechnol Adv; 2021 Dec; 53():107860. PubMed ID: 34710554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one in Mycolicibacterium smegmatis.
    Hernández-Fernández G; Acedos MG; de la Torre I; Ibero J; García JL; Galán B
    Microb Biotechnol; 2024 Aug; 17(8):e14551. PubMed ID: 39160452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial metabolism of diosgenin by a novel isolated Mycolicibacterium sp. HK-90: A promising biosynthetic platform to produce 19-carbon and 21-carbon steroids.
    Wang Z; Qiu H; Chen Y; Chen X; Fu C; Yu L
    Microb Biotechnol; 2024 Feb; 17(2):e14415. PubMed ID: 38381074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rerouting phytosterol degradation pathway for directed androst-1,4-diene-3,17-dione microbial bioconversion.
    Ke X; Cui JH; Ren QJ; Zheng T; Wang XX; Liu ZQ; Zheng YG
    Appl Microbiol Biotechnol; 2024 Feb; 108(1):186. PubMed ID: 38300290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unravelling and engineering an operon involved in the side-chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons.
    Zhao YQ; Liu YJ; Song L; Yu D; Liu K; Liu K; Gao B; Tao XY; Xiong LB; Wang FQ; Wei DZ
    Biotechnol Biofuels Bioprod; 2023 Aug; 16(1):121. PubMed ID: 37533054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum.
    Su L; Xu S; Shen Y; Xia M; Ren X; Wang L; Shang Z; Wang M
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32414803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioconversion of Phytosterols into Androstadienedione by Mycobacterium smegmatis CECT 8331.
    García-Fernández J; Martínez I; Fernández-Cabezón L; Felpeto-Santero C; García JL; Galán B
    Methods Mol Biol; 2017; 1645():211-225. PubMed ID: 28710631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in
    Zhang Y; Xiao P; Pan D; Zhou X
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrate Metabolism Decreases the Steroidal Alcohol Byproduct Compared with Ammonium in Biotransformation of Phytosterol to Androstenedione by Mycobacterium neoaurum.
    Wang X; Chen R; Wu Y; Wang D; Wei D
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1553-1560. PubMed ID: 31792785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioconversion of sitosterol to useful steroidal intermediates by mutants of Mycobacterium fortuitum.
    Wovcha MG; Antosz FJ; Knight JC; Kominek LA; Pyke TR
    Biochim Biophys Acta; 1978 Dec; 531(3):308-21. PubMed ID: 737192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioconversion of Phytosterols into Androstenedione by Mycobacterium.
    Josefsen KD; Nordborg A; Sletta H
    Methods Mol Biol; 2017; 1645():177-197. PubMed ID: 28710629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic Techniques for Manipulation of the Phytosterol Biotransformation Strain Mycobacterium neoaurum NRRL B-3805.
    Loraine JK; Smith MCM
    Methods Mol Biol; 2017; 1645():93-108. PubMed ID: 28710623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A recycled batch biotransformation strategy for 22-hydroxy-23,24-bisnorchol-4-ene-3-one production from high concentration of phytosterols by mycobacterial resting cells.
    Hu Y; Wang D; Wang X; Wei D
    Biotechnol Lett; 2020 Dec; 42(12):2589-2594. PubMed ID: 32804273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selection of Biodegrading Phytosterol Strains.
    Mondaca MA; Vidal M; Chamorro S; Vidal G
    Methods Mol Biol; 2023; 2704():43-50. PubMed ID: 37642837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors.
    Peng H; Wang Y; Jiang K; Chen X; Zhang W; Zhang Y; Deng Z; Qu X
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5414-5420. PubMed ID: 33258169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Construction of strains for bioconversion of steroid key intermediates and intelligent industrial production].
    Feng J; Zhang R; Zhang Z; Wu Q; Zhu D
    Sheng Wu Gong Cheng Xue Bao; 2022 Nov; 38(11):4335-4342. PubMed ID: 37699693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression of cytochrome p450 125 in Mycobacterium: a rational strategy in the promotion of phytosterol biotransformation.
    Su L; Shen Y; Xia M; Shang Z; Xu S; An X; Wang M
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):857-867. PubMed ID: 30073539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.