BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 38613173)

  • 1. Application of interpretable machine learning algorithms to predict acute kidney injury in patients with cerebral infarction in ICU.
    Lu X; Chen Y; Zhang G; Zeng X; Lai L; Qu C
    J Stroke Cerebrovasc Dis; 2024 Jul; 33(7):107729. PubMed ID: 38657830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated machine learning for predicting liver metastasis in patients with gastrointestinal stromal tumor: a SEER-based analysis.
    Liu L; Zhang R; Shi Y; Sun J; Xu X
    Sci Rep; 2024 May; 14(1):12415. PubMed ID: 38816560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing NSCLC pathological subtype prediction with interpretable machine learning: a comprehensive radiomics-based approach.
    Kuang B; Zhang J; Zhang M; Xia H; Qiang G; Zhang J
    Front Med (Lausanne); 2024; 11():1413990. PubMed ID: 38841579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of a risk prediction model for olfactory disorders in patients with transnasal pituitary tumors by machine learning.
    Chen M; Li Y; Zhou S; Zou L; Yu L; Deng T; Rong X; Shao S; Wu J
    Sci Rep; 2024 May; 14(1):12514. PubMed ID: 38822064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence applications in allergic rhinitis diagnosis: Focus on ensemble learning.
    Fu D; Chuanliang Z; Jingdong Y; Yifei M; Shiwang T; Yue Q; Shaoqing Y
    Asia Pac Allergy; 2024 Jun; 14(2):56-62. PubMed ID: 38827260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing safety of construction workers in Korea: an integrated text mining and machine learning framework for predicting accident types.
    Yoo JW; Park J; Park H
    Int J Inj Contr Saf Promot; 2024 Jun; 31(2):203-215. PubMed ID: 38164519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot-Study to Explore Metabolic Signature of Type 2 Diabetes: A Pipeline of Tree-Based Machine Learning and Bioinformatics Techniques for Biomarkers Discovery.
    Yagin FH; Al-Hashem F; Ahmad I; Ahmad F; Alkhateeb A
    Nutrients; 2024 May; 16(10):. PubMed ID: 38794775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential value of oral microbial signatures for prediction of oral squamous cell carcinoma based on machine learning algorithms.
    He B; Cao Y; Zhuang Z; Deng Q; Qiu Y; Pan L; Zheng X; Shi B; Lin L; Chen F
    Head Neck; 2024 Jul; 46(7):1660-1670. PubMed ID: 38695435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of a transparent artificial intelligence algorithm for US adults in the obese category of weight.
    Huang AA; Huang SY
    PLoS One; 2024; 19(5):e0304509. PubMed ID: 38820332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Machine Learning and Explainable AI (AutoML-XAI) for Metabolomics: Improving Cancer Diagnostics.
    Bifarin OO; Fernández FM
    J Am Soc Mass Spectrom; 2024 Jun; 35(6):1089-1100. PubMed ID: 38690775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the environmental chemical basis of muscle quality decline by interpretable machine learning models.
    Feng Z; Chen Y; Guo Y; Lyu J
    Am J Clin Nutr; 2024 May; ():. PubMed ID: 38825185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine-learning model for predicting depression in second-hand smokers in cross-sectional data using the Korea National Health and Nutrition Examination Survey.
    Kim NH; Kim M; Han JS; Sohn H; Oh B; Lee JW; Ahn S
    Digit Health; 2024; 10():20552076241257046. PubMed ID: 38784054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning model for prediction of permanent stoma after anterior resection of rectal cancer: A multicenter study.
    Su Y; Li Y; Zhang H; Yang W; Liu M; Luo X; Liu L
    Eur J Surg Oncol; 2024 May; 50(7):108386. PubMed ID: 38776864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tackling unbalanced datasets for yellow and brown rust detection in wheat.
    Cuenca-Romero C; Apolo-Apolo OE; Rodríguez Vázquez JN; Egea G; Pérez-Ruiz M
    Front Plant Sci; 2024; 15():1392409. PubMed ID: 38807774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of diagnostic models for the progression of hepatocellular carcinoma using machine learning.
    Jiang X; Zhou R; Jiang F; Yan Y; Zhang Z; Wang J
    Front Oncol; 2024; 14():1401496. PubMed ID: 38812780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning for predicting halogen radical reactivity toward aqueous organic chemicals.
    Liang Y; Huangfu X; Huang R; Han Z; Wu S; Wang J; Long X; Ma J; He Q
    J Hazard Mater; 2024 Jul; 472():134501. PubMed ID: 38735182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling.
    Janssen A; Hoogendoorn M; Cnossen MH; Mathôt RAA;
    CPT Pharmacometrics Syst Pharmacol; 2022 Aug; 11(8):1100-1110. PubMed ID: 38100100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing liver fibrosis diagnosis and treatment assessment: a novel biomechanical markers-based machine learning approach.
    Chang Z; Peng CH; Chen KJ; Xu GK
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38749471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of interpretable machine learning algorithms to predict distant metastasis in ovarian clear cell carcinoma.
    Guo QH; Xie FC; Zhong FM; Wen W; Zhang XR; Yu XJ; Wang XL; Huang B; Li LP; Wang XZ
    Cancer Med; 2024 Apr; 13(7):e7161. PubMed ID: 38613173
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.