These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38613186)

  • 1. Comparative transcriptome analysis reveals the redirection of metabolic flux from cell growth to astaxanthin biosynthesis in Yarrowia lipolytica.
    Wang DN; Yu CX; Feng J; Wei LJ; Chen J; Liu Z; Ouyang L; Zhang L; Liu F; Hua Q
    Yeast; 2024 Jun; 41(6):369-378. PubMed ID: 38613186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome analysis reveals multiple functions for Mhy1p in lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica.
    Wang G; Li D; Miao Z; Zhang S; Liang W; Liu L
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Jan; 1863(1):81-90. PubMed ID: 29055818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and excretion of astaxanthin by engineered Yarrowia lipolytica using plant oil as both the carbon source and the biocompatible extractant.
    Li N; Han Z; O'Donnell TJ; Kurasaki R; Kajihara L; Williams PG; Tang Y; Su WW
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6977-6989. PubMed ID: 32601736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of High Levels of 3
    Zhu HZ; Jiang S; Wu JJ; Zhou XR; Liu PY; Huang FH; Wan X
    J Agric Food Chem; 2022 Mar; 70(8):2673-2683. PubMed ID: 35191700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica.
    Ma Y; Li J; Huang S; Stephanopoulos G
    Metab Eng; 2021 Nov; 68():152-161. PubMed ID: 34634493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous Expression of the Plant-Derived Astaxanthin Biosynthesis Pathway in
    Chen J; Zhang R; Zhang G; Liu Z; Jiang H; Mao X
    J Agric Food Chem; 2023 Feb; 71(6):2943-2951. PubMed ID: 36629355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Flux Analysis of Lipid Biosynthesis in the Yeast Yarrowia lipolytica Using 13C-Labled Glucose and Gas Chromatography-Mass Spectrometry.
    Zhang H; Wu C; Wu Q; Dai J; Song Y
    PLoS One; 2016; 11(7):e0159187. PubMed ID: 27454589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated pathway engineering and transcriptome analysis for improved astaxanthin biosynthesis in
    Wang DN; Feng J; Yu CX; Zhang XK; Chen J; Wei LJ; Liu Z; Ouyang L; Zhang L; Hua Q; Liu F
    Synth Syst Biotechnol; 2022 Dec; 7(4):1133-1141. PubMed ID: 36092272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica.
    Wu Y; Xu S; Gao X; Li M; Li D; Lu W
    Microb Cell Fact; 2019 May; 18(1):83. PubMed ID: 31103047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-omics view of recombinant Yarrowia lipolytica: Enhanced ketogenic amino acid catabolism increases polyketide-synthase-driven docosahexaenoic production to high selectivity at the gram scale.
    Jovanovic Gasovic S; Dietrich D; Gläser L; Cao P; Kohlstedt M; Wittmann C
    Metab Eng; 2023 Nov; 80():45-65. PubMed ID: 37683719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of lipid production with a genome-scale model of Yarrowia lipolytica.
    Kavšček M; Bhutada G; Madl T; Natter K
    BMC Syst Biol; 2015 Oct; 9():72. PubMed ID: 26503450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism.
    Huang YY; Jian XX; Lv YB; Nian KQ; Gao Q; Chen J; Wei LJ; Hua Q
    J Biotechnol; 2018 Sep; 281():106-114. PubMed ID: 29986837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triacetic acid lactone production using 2-pyrone synthase expressing Yarrowia lipolytica via targeted gene deletion.
    Matsuoka Y; Fujie N; Nakano M; Koshiba A; Kondo A; Tanaka T
    J Biosci Bioeng; 2023 Oct; 136(4):320-326. PubMed ID: 37574415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica.
    Morin N; Cescut J; Beopoulos A; Lelandais G; Le Berre V; Uribelarrea JL; Molina-Jouve C; Nicaud JM
    PLoS One; 2011; 6(11):e27966. PubMed ID: 22132183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering in the host Yarrowia lipolytica.
    Abdel-Mawgoud AM; Markham KA; Palmer CM; Liu N; Stephanopoulos G; Alper HS
    Metab Eng; 2018 Nov; 50():192-208. PubMed ID: 30056205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of
    Kildegaard KR; Adiego-Pérez B; Doménech Belda D; Khangura JK; Holkenbrink C; Borodina I
    Synth Syst Biotechnol; 2017 Dec; 2(4):287-294. PubMed ID: 29552653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway Engineering for Beta-Carotene and Carotenoid Biosynthesis in Y. lipolytica.
    Pesantes-Munoz M; Ledesma-Amaro R
    Methods Mol Biol; 2021; 2307():191-204. PubMed ID: 33847991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient synthesis of squalene by cytoplasmic-peroxisomal engineering and regulating lipid metabolism in Yarrowia lipolytica.
    Ning Y; Liu M; Ru Z; Zeng W; Liu S; Zhou J
    Bioresour Technol; 2024 Mar; 395():130379. PubMed ID: 38281547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.