These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38613211)

  • 1. Microanatomy of the human tunnel of Corti structures and cochlear partition-tonotopic variations and transcellular signaling.
    Giese D; Li H; Liu W; Staxäng K; Hodik M; Ladak HM; Agrawal S; Schrott-Fischer A; Glueckert R; Rask-Andersen H
    J Anat; 2024 Aug; 245(2):271-288. PubMed ID: 38613211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An outer hair cell-powered global hydromechanical mechanism for cochlear amplification.
    He W; Burwood G; Fridberger A; Nuttall AL; Ren T
    Hear Res; 2022 Sep; 423():108407. PubMed ID: 34922772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct visualization of organ of corti kinematics in a hemicochlea.
    Hu X; Evans BN; Dallos P
    J Neurophysiol; 1999 Nov; 82(5):2798-807. PubMed ID: 10561446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
    Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS
    J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea.
    Cooper NP; Vavakou A; van der Heijden M
    Nat Commun; 2018 Aug; 9(1):3054. PubMed ID: 30076297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reticular lamina and basilar membrane vibrations in living mouse cochleae.
    Ren T; He W; Kemp D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-architectures of the osseous spiral laminae and spiral limbus in the mouse cochlea: a scanning electron microscopic study on the morphological basis of the auditory mechanics.
    Kücük B
    Hokkaido Igaku Zasshi; 1990 Nov; 65(6):612-27. PubMed ID: 2265821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immuno-surveillance and protection of the human cochlea.
    Liu W; Li H; Kämpfe Nordström C; Danckwardt-Lillieström N; Agrawal S; Ladak HM; Rask-Andersen H
    Front Neurol; 2024; 15():1355785. PubMed ID: 38817543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear anatomy related to cochlear micromechanics. A review.
    Lim DJ
    J Acoust Soc Am; 1980 May; 67(5):1686-95. PubMed ID: 6768784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric vibrations in the organ of Corti by outer hair cells measured from excised gerbil cochlea.
    Lin WC; Macić A; Becker J; Nam JH
    Commun Biol; 2024 May; 7(1):600. PubMed ID: 38762693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reticular lamina and basilar membrane vibrations in the transverse direction in the basal turn of the living gerbil cochlea.
    He W; Burwood G; Porsov EV; Fridberger A; Nuttall AL; Ren T
    Sci Rep; 2022 Nov; 12(1):19810. PubMed ID: 36396720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traveling waves on the organ of corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Cai H; Ruggero MA
    J Neurosci; 2012 Aug; 32(31):10522-9. PubMed ID: 22855802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear amplification and tuning depend on the cellular arrangement within the organ of Corti.
    Motallebzadeh H; Soons JAM; Puria S
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5762-5767. PubMed ID: 29760098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea.
    Schweitzer L; Lutz C; Hobbs M; Weaver SP
    Hear Res; 1996 Aug; 97(1-2):84-94. PubMed ID: 8844189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibration of the organ of Corti within the cochlear apex in mice.
    Gao SS; Wang R; Raphael PD; Moayedi Y; Groves AK; Zuo J; Applegate BE; Oghalai JS
    J Neurophysiol; 2014 Sep; 112(5):1192-204. PubMed ID: 24920025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular organization and fine structure of the human basilar membrane - RELEVANCE for cochlear implantation.
    Liu W; Atturo F; Aldaya R; Santi P; Cureoglu S; Obwegeser S; Glueckert R; Pfaller K; Schrott-Fischer A; Rask-Andersen H
    Cell Tissue Res; 2015 May; 360(2):245-62. PubMed ID: 25663274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cochlear ear horn: geometric origin of tonotopic variations in auditory signal processing.
    Altoè A; Shera CA
    Sci Rep; 2020 Nov; 10(1):20528. PubMed ID: 33239701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal development of the organ of Corti in cats: a light microscopic morphometric study.
    Sato M; Leake PA; Hradek GT
    Hear Res; 1999 Jan; 127(1-2):1-13. PubMed ID: 9925011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.