These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38613753)
1. Integration of sequential electrocoagulation and adsorption for effective removal of colour and total organic carbon in textile effluents and its utilization for seed germination and irrigation. Somasundaram G; Thavamani T; Thangavelu S Environ Sci Pollut Res Int; 2024 May; 31(21):30716-30734. PubMed ID: 38613753 [TBL] [Abstract][Full Text] [Related]
2. Efficient integration of electrocoagulation treatment with the spray-pyrolyzed activated carbon coating on stainless steel electrodes for textile effluent-bath reuse with ease. Gowthaman S; Selvaraju T Water Environ Res; 2023 Oct; 95(10):e10938. PubMed ID: 37815304 [TBL] [Abstract][Full Text] [Related]
3. Optimization and toxicity assessment of a combined electrocoagulation, H GilPavas E; Dobrosz-Gómez I; Gómez-García MÁ Sci Total Environ; 2019 Feb; 651(Pt 1):551-560. PubMed ID: 30245411 [TBL] [Abstract][Full Text] [Related]
4. Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes. De Maman R; da Luz VC; Behling L; Dervanoski A; Dalla Rosa C; Pasquali GDL Environ Sci Pollut Res Int; 2022 May; 29(21):31713-31722. PubMed ID: 35018597 [TBL] [Abstract][Full Text] [Related]
5. Upgrade of deep bed filtration with activated carbon dosage for compact micropollutant removal from wastewater in technical scale. Löwenberg J; Zenker A; Krahnstöver T; Boehler M; Baggenstos M; Koch G; Wintgens T Water Res; 2016 May; 94():246-256. PubMed ID: 26963607 [TBL] [Abstract][Full Text] [Related]
6. Sequential electro-coagulation and electro-Fenton processes for the treatment of textile wastewater. Agarwal P; Sangal VK; Mathur S Water Environ Res; 2024 Sep; 96(9):e11118. PubMed ID: 39223779 [TBL] [Abstract][Full Text] [Related]
7. Removal of colour and COD from synthetic textile wastewaters using O3, PAC, H2O2 and HCO3-. Oguz E; Keskinler B J Hazard Mater; 2008 Mar; 151(2-3):753-60. PubMed ID: 17703876 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive study on the selection and performance of the best electrode pair for electrocoagulation of textile wastewater using multi-criteria decision-making methods (TOPSIS, VIKOR and PROMETHEE II). Ahmed T; Ahsan A; Khan MHRB; Nahian TK; Antar RH; Hasan A; Karim MR; Shafiquzzaman M; Imteaz M J Environ Manage; 2024 Jul; 363():121337. PubMed ID: 38850903 [TBL] [Abstract][Full Text] [Related]
9. Application of hybrid electrocoagulation and electrooxidation process for treatment of wastewater from the cotton textile industry. Asfaha YG; Zewge F; Yohannes T; Kebede S Chemosphere; 2022 Sep; 302():134706. PubMed ID: 35523291 [TBL] [Abstract][Full Text] [Related]
10. Catalytic ozonation of textile wastewater as a polishing step after industrial scale electrocoagulation. Bilińska L; Blus K; Foszpańczyk M; Gmurek M; Ledakowicz S J Environ Manage; 2020 Jul; 265():110502. PubMed ID: 32275237 [TBL] [Abstract][Full Text] [Related]
11. Coupling of electrocoagulation and powder activated carbon for the treatment of sustainable wastewater. Sher F; Iqbal SZ; Rasheed T; Hanif K; Sulejmanović J; Zafar F; Lima EC Environ Sci Pollut Res Int; 2021 Sep; 28(35):48505-48516. PubMed ID: 33909245 [TBL] [Abstract][Full Text] [Related]
12. Removal of COD and color from textile industrial wastewater using wheat straw activated carbon: an application of response surface and artificial neural network modeling. Agarwal S; Singh AP; Mathur S Environ Sci Pollut Res Int; 2023 Mar; 30(14):41073-41094. PubMed ID: 36630034 [TBL] [Abstract][Full Text] [Related]
13. Treatment of canola-oil refinery effluent using electrochemical methods: A comparison between combined electrocoagulation + electrooxidation and electrochemical peroxidation methods. Sharma S; Simsek H Chemosphere; 2019 Apr; 221():630-639. PubMed ID: 30665092 [TBL] [Abstract][Full Text] [Related]
14. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Bonvin F; Jost L; Randin L; Bonvin E; Kohn T Water Res; 2016 Mar; 90():90-99. PubMed ID: 26724443 [TBL] [Abstract][Full Text] [Related]
15. Use of submerged anaerobic membrane bioreactor (SAMBR) containing powdered activated carbon (PAC) for the treatment of textile effluents. Baêta BE; Ramos RL; Lima DR; Aquino SF Water Sci Technol; 2012; 65(9):1540-7. PubMed ID: 22508114 [TBL] [Abstract][Full Text] [Related]
16. Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment. Naje AS; Chelliapan S; Zakaria Z; Abbas SA J Environ Manage; 2016 Jul; 176():34-44. PubMed ID: 27039362 [TBL] [Abstract][Full Text] [Related]
17. Synergistic effects of Spirulina platensis cultivation in textile wastewater towards nutrient removal and seed germination study. Selvaraj D; Arivazhagan M Environ Pollut; 2024 Sep; 357():124435. PubMed ID: 38925215 [TBL] [Abstract][Full Text] [Related]
18. Enhancing industrial swine slaughterhouse wastewater treatment: Optimization of electrocoagulation technique and operating mode. Sandoval MA; Coreño O; García V; Salazar-González R J Environ Manage; 2024 Jan; 349():119556. PubMed ID: 37984271 [TBL] [Abstract][Full Text] [Related]
19. Predicting trace organic compound attenuation with spectroscopic parameters in powdered activated carbon processes. Ziska AD; Park M; Anumol T; Snyder SA Chemosphere; 2016 Aug; 156():163-171. PubMed ID: 27174829 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical treatment of textile wastewater using copper electrodes. Asath Murphy MS; Jovitha Jane D; Sahaya Leenus S; Robin RS; Palanichamy J; Kalivel P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(12):971-980. PubMed ID: 37888954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]