These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38613834)

  • 1. Allometric Scaling Reveals Evolutionary Constraint on Odonata Wing Cellularity via Critical Crack Length.
    Eshghi S; Rajabi H; Shafaghi S; Nabati F; Nazerian S; Darvizeh A; Gorb SN
    Adv Sci (Weinh); 2024 Jun; 11(23):e2400844. PubMed ID: 38613834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple developmental model recapitulates complex insect wing venation patterns.
    Hoffmann J; Donoughe S; Li K; Salcedo MK; Rycroft CH
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9905-9910. PubMed ID: 30224459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach.
    Outomuro D; Adams DC; Johansson F
    BMC Evol Biol; 2013 Jun; 13():118. PubMed ID: 23742224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands.
    Blanke A
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The damping and structural properties of dragonfly and damselfly wings during dynamic movement.
    Lietz C; Schaber CF; Gorb SN; Rajabi H
    Commun Biol; 2021 Jun; 4(1):737. PubMed ID: 34131288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An image based application in Matlab for automated modelling and morphological analysis of insect wings.
    Eshghi S; Nabati F; Shafaghi S; Nooraeefar V; Darvizeh A; Gorb SN; Rajabi H
    Sci Rep; 2022 Aug; 12(1):13917. PubMed ID: 35977980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-morphological adaptations of the wing nodus to flight behaviour in four dragonfly species from the family Libellulidae (Odonata: Anisoptera).
    Rajabi H; Stamm K; Appel E; Gorb SN
    Arthropod Struct Dev; 2018 Jul; 47(4):442-448. PubMed ID: 29339328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental method for 3D reconstruction of Odonata wings (methodology and dataset).
    Chitsaz N; Marian R; Chahl J
    PLoS One; 2020; 15(4):e0232193. PubMed ID: 32348334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of phase lag on the hovering flight of damselfly and dragonfly.
    Zou PY; Lai YH; Yang JT
    Phys Rev E; 2019 Dec; 100(6-1):063102. PubMed ID: 31962416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation.
    Rajabi H; Ghoroubi N; Stamm K; Appel E; Gorb SN
    Acta Biomater; 2017 Sep; 60():330-338. PubMed ID: 28739543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the fracture resistance of dragonfly wings.
    Rudolf J; Wang LY; Gorb SN; Rajabi H
    J Mech Behav Biomed Mater; 2019 Nov; 99():127-133. PubMed ID: 31351402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body and wing size, but not wing shape, vary along a large-scale latitudinal gradient in a damselfly.
    Outomuro D; Golab MJ; Johansson F; Sniegula S
    Sci Rep; 2021 Sep; 11(1):18642. PubMed ID: 34545136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wing shape and its influence on the outcome of territorial contests in the damselfly Calopteryx virgo.
    Bots J; Breuker CJ; Kaunisto KM; Koskimäki J; Gossum HV; Suhonen J
    J Insect Sci; 2012; 12():96. PubMed ID: 23425154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin.
    Appel E; Heepe L; Lin CP; Gorb SN
    J Anat; 2015 Oct; 227(4):561-82. PubMed ID: 26352411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bird predation selects for wing shape and coloration in a damselfly.
    Outomuro D; Johansson F
    J Evol Biol; 2015 Apr; 28(4):791-9. PubMed ID: 25693863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resilin in dragonfly and damselfly wings and its implications for wing flexibility.
    Donoughe S; Crall JD; Merz RA; Combes SA
    J Morphol; 2011 Dec; 272(12):1409-21. PubMed ID: 21915894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multitrait aposematic signal in Batesian mimicry.
    Outomuro D; Ángel-Giraldo P; Corral-Lopez A; Realpe E
    Evolution; 2016 Jul; 70(7):1596-608. PubMed ID: 27241010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the wing planform: morphological differentiation between migratory and nonmigratory dragonfly species.
    Suárez-Tovar CM; Sarmiento CE
    J Evol Biol; 2016 Apr; 29(4):690-703. PubMed ID: 26779975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphometric and genetic differentiation of two sibling gossamer-wing damselflies, Euphaea formosa and E. yayeyamana, and adaptive trait divergence in subtropical East Asian islands.
    Lee YH; Lin CP
    J Insect Sci; 2012; 12():53. PubMed ID: 22963544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.