These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38613993)

  • 1.
    Tachtalidou S; Spyros A; Sok N; Heinzmann SS; Denat F; Schmitt-Kopplin P; Gougeon RD; Nikolantonaki M
    Food Chem; 2024 Aug; 449():138944. PubMed ID: 38613993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Stability of Thiol and Flavanol Sulfonation Products during Wine Aging Conditions.
    Tachtalidou S; Arapitsas P; Penouilh MJ; Denat F; Schmitt-Kopplin P; Gougeon RD; Nikolantonaki M
    J Agric Food Chem; 2024 Jan; 72(4):1885-1893. PubMed ID: 36724455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability.
    Tachtalidou S; Sok N; Denat F; Noret L; Schmit-Kopplin P; Nikolantonaki M; Gougeon RD
    Food Chem; 2022 Mar; 373(Pt B):131679. PubMed ID: 34865920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid, one step preparation for measuring selected free plus SO2-bound wine carbonyls by HPLC-DAD/MS.
    Han G; Wang H; Webb MR; Waterhouse AL
    Talanta; 2015 Mar; 134():596-602. PubMed ID: 25618712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Analysis of Free and Sulfite-Bound Carbonyl Compounds in Wine by Two-Dimensional Quantitative Proton and Carbon Nuclear Magnetic Resonance Spectroscopy.
    Nikolantonaki M; Magiatis P; Waterhouse AL
    Anal Chem; 2015 Nov; 87(21):10799-806. PubMed ID: 26348554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of Acetaldehyde with Wine Flavonoids in the Presence of Sulfur Dioxide.
    Sheridan MK; Elias RJ
    J Agric Food Chem; 2016 Nov; 64(45):8615-8624. PubMed ID: 27733040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory Specificities Involving Acetaldehyde and Diacetyl in Wines Produced without Added Sulfur Dioxide.
    Pelonnier-Magimel E; Cameleyre M; Riquier L; Barbe JC
    J Agric Food Chem; 2023 Jun; 71(23):9062-9069. PubMed ID: 37253187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to quantify quinone reaction rates with wine relevant nucleophiles: a key to the understanding of oxidative loss of varietal thiols.
    Nikolantonaki M; Waterhouse AL
    J Agric Food Chem; 2012 Aug; 60(34):8484-91. PubMed ID: 22860891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of selected carbonyl oxidation products in wine by liquid chromatography with diode array detection.
    Elias RJ; Laurie VF; Ebeler SE; Wong JW; Waterhouse AL
    Anal Chim Acta; 2008 Sep; 626(1):104-10. PubMed ID: 18761127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (1)H NMR: A Novel Approach To Determining the Thermodynamic Properties of Acetaldehyde Condensation Reactions with Glycerol, (+)-Catechin, and Glutathione in Model Wine.
    Peterson AL; Waterhouse AL
    J Agric Food Chem; 2016 Sep; 64(36):6869-78. PubMed ID: 27580067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liberation of Hydrogen Sulfide from Dicysteinyl Polysulfanes in Model Wine.
    Bekker MZ; Kreitman GY; Jeffery DW; Danilewicz JC
    J Agric Food Chem; 2018 Dec; 66(51):13483-13491. PubMed ID: 30539626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Chemical Reaction of Glutathione and trans-2-Hexenal in Grape Juice Media To Form Wine Aroma Precursors: The Impact of pH, Temperature, and Sulfur Dioxide.
    Clark AC; Deed RC
    J Agric Food Chem; 2018 Feb; 66(5):1214-1221. PubMed ID: 29301400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study.
    Karoui H; Hogg N; Joseph J; Kalyanaraman B
    Arch Biochem Biophys; 1996 Jun; 330(1):115-24. PubMed ID: 8651684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New methodology for removing carbonyl compounds from sweet wines.
    Blasi M; Barbe JC; Maillard B; Dubourdieu D; Deleuze H
    J Agric Food Chem; 2007 Dec; 55(25):10382-7. PubMed ID: 18031006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfonation Reactions behind the Fate of White Wine's Shelf-Life.
    Nikolantonaki M; Romanet R; Lucio M; Schmitt-Kopplin P; Gougeon R
    Metabolites; 2022 Apr; 12(4):. PubMed ID: 35448510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved sample preparation and rapid UHPLC analysis of SO2 binding carbonyls in wine by derivatisation to 2,4-dinitrophenylhydrazine.
    Jackowetz JN; Mira de Orduña R
    Food Chem; 2013 Aug; 139(1-4):100-4. PubMed ID: 23561084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of oxidation compounds in oaked Chardonnay wines: A GC-MS and
    Pinto J; Oliveira AS; Azevedo J; De Freitas V; Lopes P; Roseira I; Cabral M; Guedes de Pinho P
    Food Chem; 2018 Aug; 257():120-127. PubMed ID: 29622187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative behavior of (+)-catechin in the presence of inactive dry yeasts: a comparison with sulfur dioxide, ascorbic acid and glutathione.
    Comuzzo P; Toniolo R; Battistutta F; Lizee M; Svigelj R; Zironi R
    J Sci Food Agric; 2017 Dec; 97(15):5158-5167. PubMed ID: 28436036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeasts Induce Acetaldehyde Production in Wine Micro-oxygenation Treatments.
    Ji J; Henschen CW; Nguyen TH; Ma L; Waterhouse AL
    J Agric Food Chem; 2020 Dec; 68(51):15216-15227. PubMed ID: 33289562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the use of sulfur dioxide and glutathione to prevent oxidative degradation of malvidin-3-monoglucoside by hydrogen peroxide in the model solution and real wine.
    Gambuti A; Picariello L; Rolle L; Moio L
    Food Res Int; 2017 Sep; 99(Pt 1):454-460. PubMed ID: 28784505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.