These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38614025)

  • 1. Cost function criteria using muscle synergies: Exploring the potential of muscle synergy hypothesis.
    Li H; Rong Q
    Comput Methods Programs Biomed; 2024 Jun; 250():108170. PubMed ID: 38614025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle synergies may improve optimization prediction of knee contact forces during walking.
    Walter JP; Kinney AL; Banks SA; D'Lima DD; Besier TF; Lloyd DG; Fregly BJ
    J Biomech Eng; 2014 Feb; 136(2):021031. PubMed ID: 24402438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromyography-Driven Forward Dynamics Simulation to Estimate In Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gaits.
    Razu SS; Guess TM
    J Biomech Eng; 2018 Jul; 140(7):0710121-8. PubMed ID: 29164228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle Synergies Modify Optimization Estimates of Joint Stiffness During Walking.
    Shourijeh MS; Fregly BJ
    J Biomech Eng; 2020 Jan; 142(1):. PubMed ID: 31343670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of parameters of equilibrium-based 3-D biomechanical models on extracted muscle synergies during isometric lumbar exertion.
    Eskandari AH; Sedaghat-Nejad E; Rashedi E; Sedighi A; Arjmand N; Parnianpour M
    J Biomech; 2016 Apr; 49(6):967-973. PubMed ID: 26747515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G; Kinney AL; Fregly BJ; Font-Llagunes JM
    J Biomech Eng; 2016 Aug; 138(8):0810011-08100111. PubMed ID: 27210105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses.
    Steele KM; Tresch MC; Perreault EJ
    J Neurophysiol; 2015 Apr; 113(7):2102-13. PubMed ID: 25589591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ
    J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse dynamic estimates of muscle recruitment and joint contact forces are more realistic when minimizing muscle activity rather than metabolic energy or contact forces.
    Zargham A; Afschrift M; De Schutter J; Jonkers I; De Groote F
    Gait Posture; 2019 Oct; 74():223-230. PubMed ID: 31563823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The association between motor modules and movement primitives of gait: A muscle and kinematic synergy study.
    Esmaeili S; Karami H; Baniasad M; Shojaeefard M; Farahmand F
    J Biomech; 2022 Mar; 134():110997. PubMed ID: 35219145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarity of muscle synergies extracted from the lower limb including the deep muscles between level and uphill treadmill walking.
    Saito A; Tomita A; Ando R; Watanabe K; Akima H
    Gait Posture; 2018 Jan; 59():134-139. PubMed ID: 29031138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On identifying kinematic and muscle synergies: a comparison of matrix factorization methods using experimental data from the healthy population.
    Lambert-Shirzad N; Van der Loos HF
    J Neurophysiol; 2017 Jan; 117(1):290-302. PubMed ID: 27852733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional muscle synergies to support the knee against moment specific loads while weight bearing.
    Flaxman TE; Shourijeh MS; Smale KB; Alkjær T; Simonsen EB; Krogsgaard MR; Benoit DL
    J Electromyogr Kinesiol; 2021 Feb; 56():102506. PubMed ID: 33271472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral properties of multiple myoelectric signals: New insights into the neural origin of muscle synergies.
    Frère J
    Neuroscience; 2017 Jul; 355():22-35. PubMed ID: 28483469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts.
    Torres-Oviedo G; Ting LH
    J Neurophysiol; 2010 Jun; 103(6):3084-98. PubMed ID: 20393070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shared muscle synergies in human walking and cycling.
    Barroso FO; Torricelli D; Moreno JC; Taylor J; Gomez-Soriano J; Bravo-Esteban E; Piazza S; Santos C; Pons JL
    J Neurophysiol; 2014 Oct; 112(8):1984-98. PubMed ID: 25057144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When 90% of the variance is not enough: residual EMG from muscle synergy extraction influences task performance.
    Barradas VR; Kutch JJ; Kawase T; Koike Y; Schweighofer N
    J Neurophysiol; 2020 Jun; 123(6):2180-2190. PubMed ID: 32267198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The flexible recruitment of muscle synergies depends on the required force-generating capability.
    Hagio S; Kouzaki M
    J Neurophysiol; 2014 Jul; 112(2):316-27. PubMed ID: 24790166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle synergy extraction during arm reaching movements at different speeds.
    Sabzevari VR; Jafari AH; Boostani R
    Technol Health Care; 2017; 25(1):123-136. PubMed ID: 27689556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.