These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38614052)

  • 21. Interactive risk analysis on crash injury severity at a mountainous freeway with tunnel groups in China.
    Huang H; Peng Y; Wang J; Luo Q; Li X
    Accid Anal Prev; 2018 Feb; 111():56-62. PubMed ID: 29172045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of traffic states on freeway crash involvement rates.
    Yeo H; Jang K; Skabardonis A; Kang S
    Accid Anal Prev; 2013 Jan; 50():713-23. PubMed ID: 22795398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying crash-prone traffic conditions under different weather on freeways.
    Xu C; Wang W; Liu P
    J Safety Res; 2013 Sep; 46():135-44. PubMed ID: 23932695
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developing dynamic speed limit strategies for mixed traffic flow to reduce collision risks at freeway bottlenecks.
    Li Y; Pan B; Xing L; Yang M; Dai J
    Accid Anal Prev; 2022 Sep; 175():106781. PubMed ID: 35926373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling and Mitigating Secondary Crash Risk for Serial Tunnels on Freeway via Lighting-Related Microscopic Traffic Model with Inter-Lane Dependency.
    Yu S; Chen Y; Song L; Xuan Z; Li Y
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing the safety impacts of raising the speed limit on Michigan freeways using the multilevel mixed-effects negative binomial model.
    Kwayu KM; Kwigizile V; Oh JS
    Traffic Inj Prev; 2020; 21(6):401-406. PubMed ID: 32496845
    [No Abstract]   [Full Text] [Related]  

  • 27. Investigating factors of crash frequency with random effects and random parameters models: New insights from Chinese freeway study.
    Hou Q; Tarko AP; Meng X
    Accid Anal Prev; 2018 Nov; 120():1-12. PubMed ID: 30075358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transfer learning-based highway crash risk evaluation considering manifold characteristics of traffic flow.
    Liu Q; Li C; Jiang H; Nie S; Chen L
    Accid Anal Prev; 2022 Apr; 168():106598. PubMed ID: 35180467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating the effect of ramp metering on freeway safety using real-time traffic data.
    Haule HJ; Ali MS; Alluri P; Sando T
    Accid Anal Prev; 2021 Jul; 157():106181. PubMed ID: 34015602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Freeway safety as a function of traffic flow.
    Golob TF; Recker WW; Alvarez VM
    Accid Anal Prev; 2004 Nov; 36(6):933-46. PubMed ID: 15350870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A crash-prediction model for road tunnels.
    Caliendo C; De Guglielmo ML; Guida M
    Accid Anal Prev; 2013 Jun; 55():107-15. PubMed ID: 23523897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating hazardous factors affecting freeway crash injury severity incorporating real-time weather data: Using a Bayesian multinomial logit model with conditional autoregressive priors.
    Zhang X; Wen H; Yamamoto T; Zeng Q
    J Safety Res; 2021 Feb; 76():248-255. PubMed ID: 33653556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developing a new real-time traffic safety management framework for urban expressways utilizing reinforcement learning tree.
    Yang K; Quddus M; Antoniou C
    Accid Anal Prev; 2022 Dec; 178():106848. PubMed ID: 36174250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the crash risk of mixed traffic on multilane rural highways using a proactive safety approach.
    Kar P; Venthuruthiyil SP; Chunchu M
    Accid Anal Prev; 2023 Aug; 188():107099. PubMed ID: 37159970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short-term prediction of safety and operation impacts of lane changes in oscillations with empirical vehicle trajectories.
    Li M; Li Z; Xu C; Liu T
    Accid Anal Prev; 2020 Feb; 135():105345. PubMed ID: 31751785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of connected vehicle-based variable speed limit under different foggy conditions based on simulated driving.
    Zhao X; Xu W; Ma J; Li H; Chen Y; Rong J
    Accid Anal Prev; 2019 Jul; 128():206-216. PubMed ID: 31055185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Driving risk assessment using driving behavior data under continuous tunnel environment.
    Yan Y; Dai Y; Li X; Tang J; Guo Z
    Traffic Inj Prev; 2019; 20(8):807-812. PubMed ID: 31738591
    [No Abstract]   [Full Text] [Related]  

  • 38. Safe, Efficient, and Comfortable Autonomous Driving Based on Cooperative Vehicle Infrastructure System.
    Chen J; Zhao C; Jiang S; Zhang X; Li Z; Du Y
    Int J Environ Res Public Health; 2023 Jan; 20(1):. PubMed ID: 36613215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Dynamic Lane-Changing Driving Strategy for CAV in Diverging Areas Based on MPC System.
    Liu H; Song X; Liu B; Liu J; Gao H; Liang Y
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-Lane Differential Variable Speed Limit Control via Deep Neural Networks Optimized by an Adaptive Evolutionary Strategy.
    Feng J; Shi T; Wu Y; Xie X; He H; Tan H
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.