BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38614131)

  • 1. Hi-GeoMVP: a hierarchical geometry-enhanced deep learning model for drug response prediction.
    Chen Y; Zhang L
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38614131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.
    Pang W; Chen M; Qin Y
    BMC Bioinformatics; 2024 May; 25(1):182. PubMed ID: 38724920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How much can deep learning improve prediction of the responses to drugs in cancer cell lines?
    Chen Y; Zhang L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34529029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOLI: multi-omics late integration with deep neural networks for drug response prediction.
    Sharifi-Noghabi H; Zolotareva O; Collins CC; Ester M
    Bioinformatics; 2019 Jul; 35(14):i501-i509. PubMed ID: 31510700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning.
    Li Y; Guo Z; Gao X; Wang G
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepTTA: a transformer-based model for predicting cancer drug response.
    Jiang L; Jiang C; Yu X; Fu R; Jin S; Liu X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35348595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TGSA: protein-protein association-based twin graph neural networks for drug response prediction with similarity augmentation.
    Zhu Y; Ouyang Z; Chen W; Feng R; Chen DZ; Cao J; Wu J
    Bioinformatics; 2022 Jan; 38(2):461-468. PubMed ID: 34559177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations.
    Liu Q; Xie L
    PLoS Comput Biol; 2021 Feb; 17(2):e1008653. PubMed ID: 33577560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning the cellular activity representation based on gene regulatory networks for prediction of tumor response to drugs.
    Xie X; Wang F; Wang G; Zhu W; Du X; Wang H
    Artif Intell Med; 2024 Jun; 152():102864. PubMed ID: 38640702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting anticancer synergistic drug combinations based on multi-task learning.
    Chen D; Wang X; Zhu H; Jiang Y; Li Y; Liu Q; Liu Q
    BMC Bioinformatics; 2023 Nov; 24(1):448. PubMed ID: 38012551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression.
    Ammad-Ud-Din M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2017 Jul; 33(14):i359-i368. PubMed ID: 28881998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks.
    Liu H; Peng W; Dai W; Lin J; Fu X; Liu L; Liu L; Yu N
    Methods; 2024 Feb; 222():41-50. PubMed ID: 38157919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction.
    Liu X; Song C; Liu S; Li M; Zhou X; Zhang W
    Bioinformatics; 2022 Oct; 38(20):4782-4789. PubMed ID: 36000898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empowering Graph Neural Networks with Block-Based Dual Adaptive Deep Adjustment for Drug Resistance-Related NcRNA Discovery.
    Zhang Y; Li X
    J Chem Inf Model; 2024 Apr; 64(8):3537-3547. PubMed ID: 38523272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.