BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38614159)

  • 1. SETDB1, an H3K9-specific methyltransferase: An attractive epigenetic target to combat cancer.
    Prashanth S; Radha Maniswami R; Rajajeyabalachandran G; Jegatheesan SK
    Drug Discov Today; 2024 May; 29(5):103982. PubMed ID: 38614159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The functions of SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) in biological process and disease.
    Luo H; Wu X; Zhu XH; Yi X; Du D; Jiang DS
    Epigenetics Chromatin; 2023 Dec; 16(1):47. PubMed ID: 38057834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SETDB1: Progress and prospects in cancer treatment potential and inhibitor research.
    Ma T; Xu F; Hou Y; Shu Y; Zhao Z; Zhang Y; Bai L; Feng L; Zhong L
    Bioorg Chem; 2024 Apr; 145():107219. PubMed ID: 38377821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquitination of Lysine 867 of the Human SETDB1 Protein Upregulates Its Histone H3 Lysine 9 (H3K9) Methyltransferase Activity.
    Ishimoto K; Kawamata N; Uchihara Y; Okubo M; Fujimoto R; Gotoh E; Kakinouchi K; Mizohata E; Hino N; Okada Y; Mochizuki Y; Tanaka T; Hamakubo T; Sakai J; Kodama T; Inoue T; Tachibana K; Doi T
    PLoS One; 2016; 11(10):e0165766. PubMed ID: 27798683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone lysine methyltransferase SETDB1 as a novel target for central nervous system diseases.
    Markouli M; Strepkos D; Chlamydas S; Piperi C
    Prog Neurobiol; 2021 May; 200():101968. PubMed ID: 33279625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level.
    Park I; Hwang YJ; Kim T; Viswanath ANI; Londhe AM; Jung SY; Sim KM; Min SJ; Lee JE; Seong J; Kim YK; No KT; Ryu H; Pae AN
    J Comput Aided Mol Des; 2017 Oct; 31(10):877-889. PubMed ID: 28879500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SETDB1-Mediated Silencing of Retroelements.
    Fukuda K; Shinkai Y
    Viruses; 2020 May; 12(6):. PubMed ID: 32486217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The H3K9 Methylation Writer SETDB1 and its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells.
    Cruz-Tapias P; Robin P; Pontis J; Maestro LD; Ait-Si-Ali S
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31557926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging role of SETDB1 as a therapeutic target.
    Karanth AV; Maniswami RR; Prashanth S; Govindaraj H; Padmavathy R; Jegatheesan SK; Mullangi R; Rajagopal S
    Expert Opin Ther Targets; 2017 Mar; 21(3):319-331. PubMed ID: 28076698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that miR-152-3p is a positive regulator of SETDB1-mediated H3K9 histone methylation and serves as a toggle between histone and DNA methylation.
    Singh SK; Bahal R; Rasmussen TP
    Exp Cell Res; 2020 Oct; 395(2):112216. PubMed ID: 32768498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The H3K9 methyltransferase Setdb1 regulates TLR4-mediated inflammatory responses in macrophages.
    Hachiya R; Shiihashi T; Shirakawa I; Iwasaki Y; Matsumura Y; Oishi Y; Nakayama Y; Miyamoto Y; Manabe I; Ochi K; Tanaka M; Goda N; Sakai J; Suganami T; Ogawa Y
    Sci Rep; 2016 Jun; 6():28845. PubMed ID: 27349785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Updating of Biological Functions of Methyltransferase SETDB1 and Its Relevance in Lung Cancer and Mesothelioma.
    Yuan L; Sun B; Xu L; Chen L; Ou W
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of the ubiquitination-triggered active form of SETDB1 in Escherichia coli for biochemical and structural analyses.
    Funyu T; Kanemaru Y; Onoda H; Arita K
    J Biochem; 2021 Dec; 170(5):655-662. PubMed ID: 34324684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A regulatory circuitry comprising TP53,
    Chen B; Wang J; Wang J; Wang H; Gu X; Tang L; Feng X
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 30054425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinated regulation of microRNA genes in C19MC by SETDB1.
    Jeon K; Eom J; Min B; Park JS; Kang YK
    Biochem Biophys Res Commun; 2022 Dec; 637():17-22. PubMed ID: 36375246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitination-dependent and -independent repression of target genes by SETDB1 reveal a context-dependent role for its methyltransferase activity during adipogenesis.
    Zhang J; Matsumura Y; Kano Y; Yoshida A; Kawamura T; Hirakawa H; Inagaki T; Tanaka T; Kimura H; Yanagi S; Fukami K; Doi T; Osborne TF; Kodama T; Aburatani H; Sakai J
    Genes Cells; 2021 Jul; 26(7):513-529. PubMed ID: 33971063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic mechanism of SETDB1 in brain: implications for neuropsychiatric disorders.
    Zhu Y; Sun D; Jakovcevski M; Jiang Y
    Transl Psychiatry; 2020 Apr; 10(1):115. PubMed ID: 32321908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone H3K9 methyltransferase SETDB1 augments invadopodia formation to promote tumor metastasis.
    Ueshima S; Fang J
    Oncogene; 2022 Jun; 41(24):3370-3380. PubMed ID: 35546351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone Methyltransferase SETDB1: A Common Denominator of Tumorigenesis with Therapeutic Potential.
    Strepkos D; Markouli M; Klonou A; Papavassiliou AG; Piperi C
    Cancer Res; 2021 Feb; 81(3):525-534. PubMed ID: 33115801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic regulation of the Drosophila chromosome 4 by the histone H3K9 methyltransferase dSETDB1.
    Tzeng TY; Lee CH; Chan LW; Shen CK
    Proc Natl Acad Sci U S A; 2007 Jul; 104(31):12691-6. PubMed ID: 17652514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.