BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38614203)

  • 1. Methane sink of subterranean space in an integrated atmosphere-soil-cave system.
    Zeng G; Lu W; Wang Y; Peng H; Chen P; Weng X; Chen J; Zhang L; Du H; Luo W; Wang S
    Environ Res; 2024 Jul; 252(Pt 2):118904. PubMed ID: 38614203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity and Composition of Methanotroph Communities in Caves.
    Webster KD; Schimmelmann A; Drobniak A; Mastalerz M; Rosales Lagarde L; Boston PJ; Lennon JT
    Microbiol Spectr; 2022 Aug; 10(4):e0156621. PubMed ID: 35943259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. USC
    Cheng XY; Liu XY; Wang HM; Su CT; Zhao R; Bodelier PLE; Wang WQ; Ma LY; Lu XL
    Microbiol Spectr; 2021 Sep; 9(1):e0082021. PubMed ID: 34406837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methanotrophs dominate methanogens and act as a methane sink in a subterranean karst cave.
    Cheng X; Zeng Z; Liu X; Li L; Wang H; Zhao R; Bodelier PLE; Wang W; Wang Y; Tuovinen OH
    Sci Total Environ; 2023 Sep; 892():164562. PubMed ID: 37257612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upland soil cluster γ dominates the methanotroph communities in the karst Heshang Cave.
    Zhao R; Wang H; Cheng X; Yun Y; Qiu X
    FEMS Microbiol Ecol; 2018 Dec; 94(12):. PubMed ID: 30265314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Niche differentiation of atmospheric methane-oxidizing bacteria and their community assembly in subsurface karst caves.
    Cheng X; Wang H; Zeng Z; Li L; Zhao R; Bodelier PLE; Wang Y; Liu X; Su C; Liu S
    Environ Microbiol Rep; 2022 Dec; 14(6):886-896. PubMed ID: 35925016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial contributions to subterranean methane sinks.
    Lennon JT; Nguyễn-Thùy D; Phạm TM; Drobniak A; Tạ PH; Phạm NÐ; Streil T; Webster KD; Schimmelmann A
    Geobiology; 2017 Mar; 15(2):254-258. PubMed ID: 27671735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Temporal and Spatial Variability of Atmospheric-Methane Oxidation in Alpine Glacier Forefield Soils.
    Chiri E; Nauer PA; Rainer EM; Zeyer J; Schroth MH
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28687652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.
    Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D
    Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the impact of soil methane sink on atmospheric methane concentrations in 2020.
    Zhou X; Xiao W; Cheng L; Smaill SJ; Peng S
    Glob Chang Biol; 2024 Jun; 30(6):e17381. PubMed ID: 38923235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal total methane depletion in limestone caves.
    Waring CL; Hankin SI; Griffith DWT; Kertesz MA; Kobylski V; Wilson NL; Coleman NV; Kettlewell G; Zlot R; Bosse M; Bell G
    Sci Rep; 2017 Aug; 7(1):8314. PubMed ID: 28814720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperate forest methane sink diminished by tree emissions.
    Pitz S; Megonigal JP
    New Phytol; 2017 Jun; 214(4):1432-1439. PubMed ID: 28370057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the Spatial Micro-Distribution of Methanotrophic Bacteria.
    Karbin S; Guillet C; Kammann CI; Niklaus PA
    PLoS One; 2015; 10(7):e0131665. PubMed ID: 26147694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales.
    Dai S; Ju W; Zhang Y; He Q; Song L; Li J
    Sci Total Environ; 2019 Nov; 690():973-990. PubMed ID: 31302561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands.
    Nolasco D; Lima RN; Hernández PA; Pérez NM
    Environ Sci Pollut Res Int; 2008 Jan; 15(1):51-60. PubMed ID: 18306888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].
    Li JH; Pu JB; Sun PA; Yuan DX; Liu W; Zhang T; Mo X
    Huan Jing Ke Xue; 2015 Nov; 36(11):4032-42. PubMed ID: 26910987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative mitigation of aquatic methane emissions in large Amazonian rivers.
    Sawakuchi HO; Bastviken D; Sawakuchi AO; Ward ND; Borges CD; Tsai SM; Richey JE; Ballester MV; Krusche AV
    Glob Chang Biol; 2016 Mar; 22(3):1075-85. PubMed ID: 26872424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO).
    Conrad R
    Microbiol Rev; 1996 Dec; 60(4):609-40. PubMed ID: 8987358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiolysis via radioactivity is not responsible for rapid methane oxidation in subterranean air.
    Schimmelmann A; Fernandez-Cortes A; Cuezva S; Streil T; Lennon JT
    PLoS One; 2018; 13(11):e0206506. PubMed ID: 30383783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of methane emission measurements using Eddy Covariance and manual and automated chamber-based techniques in Tibetan Plateau alpine wetland.
    Yu L; Wang H; Wang G; Song W; Huang Y; Li SG; Liang N; Tang Y; He JS
    Environ Pollut; 2013 Oct; 181():81-90. PubMed ID: 23838484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.