These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 38615167)
1. Development and validation of a multi-modality fusion deep learning model for differentiating glioblastoma from solitary brain metastases. Shen S; Li C; Fan Y; Lu S; Yan Z; Liu H; Zhou H; Zhang Z Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 49(1):58-67. PubMed ID: 38615167 [TBL] [Abstract][Full Text] [Related]
2. Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic-MRI and Deep-Learning Radiomics Signatures. Zhang Y; Zhang H; Zhang H; Ouyang Y; Su R; Yang W; Huang B J Magn Reson Imaging; 2024 Sep; 60(3):909-920. PubMed ID: 37955154 [TBL] [Abstract][Full Text] [Related]
3. Aided Diagnosis Model Based on Deep Learning for Glioblastoma, Solitary Brain Metastases, and Primary Central Nervous System Lymphoma with Multi-Modal MRI. Liu X; Liu J Biology (Basel); 2024 Feb; 13(2):. PubMed ID: 38392317 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning-Based Analysis of Magnetic Resonance Radiomics for the Classification of Gliosarcoma and Glioblastoma. Qian Z; Zhang L; Hu J; Chen S; Chen H; Shen H; Zheng F; Zang Y; Chen X Front Oncol; 2021; 11():699789. PubMed ID: 34490097 [TBL] [Abstract][Full Text] [Related]
5. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach. Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238 [TBL] [Abstract][Full Text] [Related]
6. Machine-Learning and Radiomics-Based Preoperative Prediction of Ki-67 Expression in Glioma Using MRI Data. Ni J; Zhang H; Yang Q; Fan X; Xu J; Sun J; Zhang J; Hu Y; Xiao Z; Zhao Y; Zhu H; Shi X; Feng W; Wang J; Wan C; Zhang X; Liu Y; You Y; Yu Y Acad Radiol; 2024 Aug; 31(8):3397-3405. PubMed ID: 38458887 [TBL] [Abstract][Full Text] [Related]
7. [A multi-modal feature fusion classification model based on distance matching and discriminative representation learning for differentiation of high-grade glioma from solitary brain metastasis]. Zhang Z; Xie J; Zhong W; Liang F; Yang R; Zhen X Nan Fang Yi Ke Da Xue Xue Bao; 2024 Jan; 44(1):138-145. PubMed ID: 38293985 [TBL] [Abstract][Full Text] [Related]
8. Handcrafted and Deep Learning-Based Radiomic Models Can Distinguish GBM from Brain Metastasis. Liu Z; Jiang Z; Meng L; Yang J; Liu Y; Zhang Y; Peng H; Li J; Xiao G; Zhang Z; Zhou R J Oncol; 2021; 2021():5518717. PubMed ID: 34188680 [TBL] [Abstract][Full Text] [Related]
9. Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: A neuro-oncological investigation. Saxena S; Jena B; Mohapatra B; Gupta N; Kalra M; Scartozzi M; Saba L; Suri JS Comput Biol Med; 2023 Feb; 153():106492. PubMed ID: 36621191 [TBL] [Abstract][Full Text] [Related]
10. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI. Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517 [TBL] [Abstract][Full Text] [Related]
11. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. Artzi M; Bressler I; Ben Bashat D J Magn Reson Imaging; 2019 Aug; 50(2):519-528. PubMed ID: 30635952 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T Sun YZ; Yan LF; Han Y; Nan HY; Xiao G; Tian Q; Pu WH; Li ZY; Wei XC; Wang W; Cui GB BMC Med Imaging; 2021 Feb; 21(1):17. PubMed ID: 33535988 [TBL] [Abstract][Full Text] [Related]
13. Deep Learning Radiomics for the Assessment of Telomerase Reverse Transcriptase Promoter Mutation Status in Patients With Glioblastoma Using Multiparametric MRI. Zhang H; Zhang H; Zhang Y; Zhou B; Wu L; Lei Y; Huang B J Magn Reson Imaging; 2023 Nov; 58(5):1441-1451. PubMed ID: 36896953 [TBL] [Abstract][Full Text] [Related]
14. An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach. Zhang L; Liu X; Xu X; Liu W; Jia Y; Chen W; Fu X; Li Q; Sun X; Zhang Y; Shu S; Zhang X; Xiang R; Chen H; Sun P; Geng D; Yu Z; Liu J; Wang J Eur J Radiol; 2023 Jan; 158():110639. PubMed ID: 36463703 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Intraoperative Ultrasound B-Mode and Strain Elastography for the Differentiation of Glioblastomas From Solitary Brain Metastases. An Automated Deep Learning Approach for Image Analysis. Cepeda S; García-García S; Arrese I; Fernández-Pérez G; Velasco-Casares M; Fajardo-Puentes M; Zamora T; Sarabia R Front Oncol; 2020; 10():590756. PubMed ID: 33604286 [TBL] [Abstract][Full Text] [Related]
16. Deep learning radiomics based on multimodal imaging for distinguishing benign and malignant breast tumours. Lu G; Tian R; Yang W; Liu R; Liu D; Xiang Z; Zhang G Front Med (Lausanne); 2024; 11():1402967. PubMed ID: 39036101 [TBL] [Abstract][Full Text] [Related]
17. An Integrated Radiomics Model Incorporating Diffusion-Weighted Imaging and Zhang L; Yao R; Gao J; Tan D; Yang X; Wen M; Wang J; Xie X; Liao R; Tang Y; Chen S; Li Y Front Oncol; 2021; 11():732704. PubMed ID: 34527594 [TBL] [Abstract][Full Text] [Related]
18. Multi-task learning-based feature selection and classification models for glioblastoma and solitary brain metastases. Huang Y; Huang S; Liu Z Front Oncol; 2022; 12():1000471. PubMed ID: 36212457 [TBL] [Abstract][Full Text] [Related]
19. Integrating MRI-based radiomics and clinicopathological features for preoperative prognostication of early-stage cervical adenocarcinoma patients: in comparison to deep learning approach. Qiu H; Wang M; Wang S; Li X; Wang D; Qin Y; Xu Y; Yin X; Hacker M; Han S; Li X Cancer Imaging; 2024 Aug; 24(1):101. PubMed ID: 39090668 [TBL] [Abstract][Full Text] [Related]
20. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme. Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]