These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38615246)

  • 1. Fabrication of Crescent Shaped Microparticles for Particle Templated Droplet Formation.
    Yang Y; Vagin SI; Rieger B; Destgeer G
    Macromol Rapid Commun; 2024 Jul; 45(13):e2300721. PubMed ID: 38615246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device.
    Chen M; Aluunmani R; Bolognesi G; Vladisavljević GT
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable Fabrication and Use of 3D Structured Microparticles Spatially Functionalized with Biomolecules.
    Lee S; de Rutte J; Dimatteo R; Koo D; Di Carlo D
    ACS Nano; 2022 Jan; 16(1):38-49. PubMed ID: 34846855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
    Krutkramelis K; Xia B; Oakey J
    Lab Chip; 2016 Apr; 16(8):1457-65. PubMed ID: 26987384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous Two-Phase System (ATPS)-Based Polymersomes for Particle Isolation and Separation.
    Seo H; Nam C; Kim E; Son J; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55467-55475. PubMed ID: 33237722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacially-mediated oxygen inhibition for precise and continuous poly(ethylene glycol) diacrylate (PEGDA) particle fabrication.
    Debroy D; Oakey J; Li D
    J Colloid Interface Sci; 2018 Jan; 510():334-344. PubMed ID: 28961432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The preparation of dextran microspheres in an all-aqueous system: effect of the formulation parameters on particle characteristics.
    Stenekes RJ; Franssen O; van Bommel EM; Crommelin DJ; Hennink WE
    Pharm Res; 1998 Apr; 15(4):557-61. PubMed ID: 9587951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Design of Biocompatible Enzyme-Based Hydrogel Microparticles with Autonomous Movement.
    Keller S; Teora SP; Hu GX; Nijemeisland M; Wilson DA
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9814-9817. PubMed ID: 29917309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-Purged Microfluidic Device to Enhance Cell Viability in Photopolymerized PEG Hydrogel Microparticles.
    Xia B; Krutkramelis K; Oakey J
    Biomacromolecules; 2016 Jul; 17(7):2459-65. PubMed ID: 27285343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin particle formation in supersaturated aqueous solutions of poly(ethylene glycol).
    Bromberg L; Rashba-Step J; Scott T
    Biophys J; 2005 Nov; 89(5):3424-33. PubMed ID: 16254391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chembio extraction on a chip by nanoliter droplet ejection.
    Yu H; Kwon JW; Kim ES
    Lab Chip; 2005 Mar; 5(3):344-9. PubMed ID: 15726211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stop-flow lithography for the production of shape-evolving degradable microgel particles.
    Hwang DK; Oakey J; Toner M; Arthur JA; Anseth KS; Lee S; Zeiger A; Van Vliet KJ; Doyle PS
    J Am Chem Soc; 2009 Apr; 131(12):4499-504. PubMed ID: 19215127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microporated PEG spheres for fluorescent analyte detection.
    Rounds RM; Ibey BL; Beier HT; Pishko MV; Coté GL
    J Fluoresc; 2007 Jan; 17(1):57-63. PubMed ID: 17111227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step two-dimensional microfluidics-based synthesis of three-dimensional particles.
    Hakimi N; Tsai SS; Cheng CH; Hwang DK
    Adv Mater; 2014 Mar; 26(9):1393-8. PubMed ID: 24327458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of biodegradable particles with tunable morphologies by the addition of resveratrol to oil in water emulsions.
    Isely C; Stevens AC; Tate GL; Monnier JR; Gower RM
    Int J Pharm; 2020 Nov; 590():119917. PubMed ID: 33022356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentalized Aqueous-in-Aqueous Droplets for Flow Biocatalysis.
    Wang Y; Dong Y; Liu H; Yin W; Guo T; Yuan H; Meng T
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5009-5016. PubMed ID: 35049284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the particle stabilization of water-in-water emulsions by modulating the phase preference of the particles.
    Gonzalez-Jordan A; Nicolai T; Benyahia L
    J Colloid Interface Sci; 2018 Nov; 530():505-510. PubMed ID: 29990786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple, low-cost fabrication of acrylic based droplet microfluidics and its use to generate DNA-coated particles.
    Islam MM; Loewen A; Allen PB
    Sci Rep; 2018 Jun; 8(1):8763. PubMed ID: 29884895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printing enables separation of orthogonal functions within a hydrogel particle.
    Raman R; Clay NE; Sen S; Melhem M; Qin E; Kong H; Bashir R
    Biomed Microdevices; 2016 Jun; 18(3):49. PubMed ID: 27215416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.