BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38615816)

  • 1. Understanding the Impact of Combined Hydrodynamic Shear and Interfacial Dilatational Stress, on Interface-Mediated Particle Formation for Monoclonal Antibody Formulations.
    Griffin VP; Pace S; Ogunyankin MO; Holstein M; Hung J; Dhar P
    J Pharm Sci; 2024 Apr; ():. PubMed ID: 38615816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the Combined Impact of Temperature and Application of Interfacial Dilatational Stresses on Surface-mediated Protein Particle Formation in Monoclonal Antibody Formulations.
    Griffin VP; Merritt K; Vaclaw C; Whitaker N; Volkin DB; Ogunyankin MO; Pace S; Dhar P
    J Pharm Sci; 2022 Mar; 111(3):680-689. PubMed ID: 34742729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Protein Particle Formation in IgG1 mAbs Formulated with PS20 Vs. PS80 When Subjected to Interfacial Dilatational Stress.
    Vaclaw C; Merritt K; Griffin VP; Whitaker N; Gokhale M; Volkin DB; Ogunyankin MO; Dhar P
    AAPS PharmSciTech; 2023 Apr; 24(5):104. PubMed ID: 37081185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions.
    Lin GL; Pathak JA; Kim DH; Carlson M; Riguero V; Kim YJ; Buff JS; Fuller GG
    Soft Matter; 2016 Apr; 12(14):3293-302. PubMed ID: 26891116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Polysorbate 80 Grade on the Interfacial Properties and Interfacial Stress Induced Subvisible Particle Formation in Monoclonal Antibodies.
    Vaclaw C; Merritt K; Pringle V; Whitaker N; Gokhale M; Carvalho T; Pan D; Liu Z; Bindra D; Khossravi M; Bolgar M; Volkin DB; Ogunyankin MO; Dhar P
    J Pharm Sci; 2021 Feb; 110(2):746-759. PubMed ID: 32987092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.
    Ghazvini S; Kalonia C; Volkin DB; Dhar P
    J Pharm Sci; 2016 May; 105(5):1643-1656. PubMed ID: 27025981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Adsorption Controls Particle Formation in Antibody Formulations Subjected to Extensional Flows and Hydrodynamic Shear.
    Thite NG; Ghazvini S; Wallace N; Feldman N; Calderon CP; Randolph TW
    J Pharm Sci; 2023 Nov; 112(11):2766-2777. PubMed ID: 37453529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface.
    Freer EM; Yim KS; Fuller GG; Radke CJ
    Langmuir; 2004 Nov; 20(23):10159-67. PubMed ID: 15518508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial dilatational elasticity and viscosity of beta-lactoglobulin at air-water interface using pulsating bubble tensiometry.
    Wang Z; Narsimhan G
    Langmuir; 2005 May; 21(10):4482-9. PubMed ID: 16032864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insoluble layer deposition and dilatational rheology at a microscale spherical cap interface.
    Kotula AP; Anna SL
    Soft Matter; 2016 Aug; 12(33):7038-55. PubMed ID: 27478885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A miniaturized radial Langmuir trough for simultaneous dilatational deformation and interfacial microscopy.
    Kale SK; Cope AJ; Goggin DM; Samaniuk JR
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):1085-1098. PubMed ID: 32932179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteins on the Rack: Mechanistic Studies on Protein Particle Formation During Peristaltic Pumping.
    Deiringer N; Friess W
    J Pharm Sci; 2022 May; 111(5):1370-1378. PubMed ID: 35122831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Adsorption and Layer Formation at the Stainless Steel-Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody.
    Kalonia CK; Heinrich F; Curtis JE; Raman S; Miller MA; Hudson SD
    Mol Pharm; 2018 Mar; 15(3):1319-1331. PubMed ID: 29425047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of formulation pH on physicochemical protein characteristics at the liquid-air interface.
    Koepf E; Richert M; Braunschweig B; Schroeder R; Brezesinski G; Friess W
    Int J Pharm; 2018 Apr; 541(1-2):234-245. PubMed ID: 29486287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial flow of a surfactant-laden interface under asymmetric shear flow.
    Eftekhari M; Schwarzenberger K; Heitkam S; Eckert K
    J Colloid Interface Sci; 2021 Oct; 599():837-848. PubMed ID: 33991800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorbitan tristearate layers at the air/water interface studied by shear and dilatational interfacial rheology.
    Erni P; Fischer P; Windhab EJ
    Langmuir; 2005 Nov; 21(23):10555-63. PubMed ID: 16262320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibodies Adsorbed to the Air-Water Interface Form Soft Glasses.
    Wood CV; Razinkov VI; Qi W; Roberts CJ; Vermant J; Furst EM
    Langmuir; 2023 Jun; 39(22):7775-7782. PubMed ID: 37222141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoclonal Antibody Interfaces: Dilatation Mechanics and Bubble Coalescence.
    Kannan A; Shieh IC; Leiske DL; Fuller GG
    Langmuir; 2018 Jan; 34(2):630-638. PubMed ID: 29251942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Behavior of Particle-Laden Bubbles under Asymmetric Shear Flow.
    Eftekhari M; Schwarzenberger K; Heitkam S; Javadi A; Bashkatov A; Ata S; Eckert K
    Langmuir; 2021 Nov; 37(45):13244-13254. PubMed ID: 34726918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.