BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38615855)

  • 1. A novel approach for the green synthesis of iron nanoparticles using marigold extract, black liquor, and nanocellulose: Effect on marigold growth parameters.
    Malekzadeh E; Tatari A; Motlagh MB; Nohesara M; Mohammadi S
    Int J Biol Macromol; 2024 May; 267(Pt 2):131552. PubMed ID: 38615855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities.
    Batool F; Iqbal MS; Khan SU; Khan J; Ahmed B; Qadir MI
    Sci Rep; 2021 Nov; 11(1):22132. PubMed ID: 34764312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry.
    Irshad R; Tahir K; Li B; Ahmad A; R Siddiqui A; Nazir S
    J Photochem Photobiol B; 2017 May; 170():241-246. PubMed ID: 28454048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green synthesis of zero-valent Fe-nanoparticles: Catalytic degradation of rhodamine B, interactions with bovine serum albumin and their enhanced antimicrobial activities.
    Khan Z; Al-Thabaiti SA
    J Photochem Photobiol B; 2018 Mar; 180():259-267. PubMed ID: 29477891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial Activity of Biosynthesized Selenium Nanoparticles Using Extracts of
    Hernández-Díaz JA; Garza-García JJ; León-Morales JM; Zamudio-Ojeda A; Arratia-Quijada J; Velázquez-Juárez G; López-Velázquez JC; García-Morales S
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Arbuscular Mycorrhizal Fungi On Yield and Phytoremediation Performance of Pot Marigold (Calendula officinalis L.) Under Heavy Metals Stress.
    Tabrizi L; Mohammadi S; Delshad M; Moteshare Zadeh B
    Int J Phytoremediation; 2015; 17(12):1244-52. PubMed ID: 26237494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green Synthesis and Characterization of Iron Nanoparticles Synthesized from Aqueous Leaf Extract of
    Nahari MH; Al Ali A; Asiri A; Mahnashi MH; Shaikh IA; Shettar AK; Hoskeri J
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract.
    Aksu Demirezen D; Yıldız YŞ; Yılmaz Ş; Demirezen Yılmaz D
    J Biosci Bioeng; 2019 Feb; 127(2):241-245. PubMed ID: 30348486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Characterization of Iron and Silver Nanoparticles: Extract-Stabilized and Classical Synthesis Methods.
    Akhatova F; Konnova S; Kryuchkova M; Batasheva S; Mazurova K; Vikulina A; Volodkin D; Rozhina E
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum.
    Mohanraj S; Kodhaiyolii S; Rengasamy M; Pugalenthi V
    Appl Biochem Biotechnol; 2014 May; 173(1):318-31. PubMed ID: 24648140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process optimisation for green synthesis of zero-valent iron nanoparticles using
    Akhbari M; Hajiaghaee R; Ghafarzadegan R; Hamedi S; Yaghoobi M
    IET Nanobiotechnol; 2019 Apr; 13(2):160-169. PubMed ID: 31051446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable-Green Synthesis of Silver Nanoparticles Using Aqueous
    Balciunaitiene A; Puzeryte V; Radenkovs V; Krasnova I; Memvanga PB; Viskelis P; Streimikyte P; Viskelis J
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate.
    Ahmed A; Usman M; Yu B; Ding X; Peng Q; Shen Y; Cong H
    J Photochem Photobiol B; 2020 Jan; 202():111682. PubMed ID: 31731077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different conditions of synthesis on properties of silver nanoparticles stabilized by nanocellulose from carrot pomace.
    Cieśla J; Chylińska M; Zdunek A; Szymańska-Chargot M
    Carbohydr Polym; 2020 Oct; 245():116513. PubMed ID: 32718623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient catalytic degradation of organic dyes using iron nanoparticles synthesized with Vernonia Amygdalina leaf extract.
    Jara YS; Mekiso TT; Washe AP
    Sci Rep; 2024 Mar; 14(1):6997. PubMed ID: 38523139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review.
    Mondal P; Anweshan A; Purkait MK
    Chemosphere; 2020 Nov; 259():127509. PubMed ID: 32645598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the multipotentiality of plant extracts for the green synthesis of iron nanoparticles: A study of adsorption capacity and dye degradation efficiency.
    Kumari T; Phogat D; Shukla V
    Environ Res; 2023 Jul; 229():116025. PubMed ID: 37127105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead content in pot marigold (Calendula officinalis L.) inflorescences and leaves: impact of precipitations and vicinity of motorway.
    Meos A; Jüriado T; Matto V; Raal A
    Biol Trace Elem Res; 2011 May; 140(2):244-51. PubMed ID: 20405338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations.
    Guler E; Barlas FB; Yavuz M; Demir B; Gumus ZP; Baspinar Y; Coskunol H; Timur S
    Colloids Surf B Biointerfaces; 2014 Sep; 121():299-306. PubMed ID: 25009101
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.