BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 3861621)

  • 1. Excess purine degradation in exercising muscles of patients with glycogen storage disease types V and VII.
    Mineo I; Kono N; Shimizu T; Hara N; Yamada Y; Sumi S; Nonaka K; Tarui S
    J Clin Invest; 1985 Aug; 76(2):556-60. PubMed ID: 3861621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myogenic hyperuricemia. A common pathophysiologic feature of glycogenosis types III, V, and VII.
    Mineo I; Kono N; Hara N; Shimizu T; Yamada Y; Kawachi M; Kiyokawa H; Wang YL; Tarui S
    N Engl J Med; 1987 Jul; 317(2):75-80. PubMed ID: 3473284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myogenic hyperuricemia: a comparative study between type V and type VII glycogenosis.
    Hara N; Mineo I; Kono N; Kiyokawa H; Kawachi M; Yamada Y; Nakajima H; Shimizu T; Kuwajima M; Wang YL
    Adv Exp Med Biol; 1989; 253A():381-6. PubMed ID: 2624217
    [No Abstract]   [Full Text] [Related]  

  • 4. Skeletal muscle adenosine, inosine and hypoxanthine release following ischaemic forearm exercise in myoadenylate deaminase deficiency and McArdle's disease.
    Sinkeler S; Joosten E; Wevers R; Binkhorst R; Oei L
    Adv Exp Med Biol; 1986; 195 Pt B():517-23. PubMed ID: 3464164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced release of ammonia and hypoxanthine from exercising muscles in patients with idiopathic hypoparathyroidism.
    Hara N; Mineo I; Kono N; Shimizu T; Yamada Y; Kawachi M; Suzuki K; Fukumoto Y; Tarui S
    Muscle Nerve; 1987 Sep; 10(7):599-602. PubMed ID: 3657847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxanthine and Mcardle disease: a clue to metabolic stress in the working forearm.
    Brooke MH; Patterson VH; Kaiser KK
    Muscle Nerve; 1983; 6(3):204-6. PubMed ID: 6574314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Myogenic hyperuricemia].
    Yamasaki T; Hamaguchi T; Nakajima H; Matsuzawa Y
    Nihon Rinsho; 1996 Dec; 54(12):3343-8. PubMed ID: 8976117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose infusion paradoxically accelerates degradation of adenine nucleotide in working muscle of patients with glycogen storage disease type VII.
    Ono A; Kuwajima M; Kono N; Mineo I; Nakagawa C; Tarui S; Matsuzawa Y
    Neurology; 1995 Jan; 45(1):161-4. PubMed ID: 7824108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Glycogenosis (molecular mechanism of muscle glycogenosis)].
    Tarui S; Mineo I; Nakajima H; Kono N
    Tanpakushitsu Kakusan Koso; 1988 Apr; 33(5):637-42. PubMed ID: 3270875
    [No Abstract]   [Full Text] [Related]  

  • 10. Glucose infusion abolishes the excessive ATP degradation in working muscles of a patient with McArdle's disease.
    Mineo I; Kono N; Yamada Y; Hara N; Kiyokawa H; Hamaguchi T; Kawachi M; Yamasaki T; Nakajima H; Kuwajima M
    Muscle Nerve; 1990 Jul; 13(7):618-20. PubMed ID: 2388661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased plasma uric acid after exercise in muscle phosphofructokinase deficiency.
    Kono N; Mineo I; Shimizu T; Hara N; Yamada Y; Nonaka K; Tarui S
    Neurology; 1986 Jan; 36(1):106-8. PubMed ID: 2934643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of branched-chain amino acids and ammonia during exercise: clues from McArdle's disease.
    Wagenmakers AJ; Coakley JH; Edwards RH
    Int J Sports Med; 1990 May; 11 Suppl 2():S101-13. PubMed ID: 2193889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP degradation products after ischemic exercise: hereditary lack of phosphorylase or carnitine palmityltransferase.
    Bertorini TE; Shively V; Taylor B; Palmieri GM; Fox IH
    Neurology; 1985 Sep; 35(9):1355-7. PubMed ID: 3860749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Clinical and biochemical correlations in certain metabolic myopathies].
    de Barsy T
    Bull Mem Acad R Med Belg; 1992; 147(10):385-92; discussion 392-3. PubMed ID: 1303789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism of exercise-induced hyperuricemia].
    Hadano S; Ogasawara M; Ito A
    Nihon Seirigaku Zasshi; 1987; 49(5):151-9. PubMed ID: 3681743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of peripheral arterial occlusive disease on muscular metabolism. Part 1: Changes in lactate, ammonia, and hypoxanthine concentration in femoral blood.
    Rexroth W; Hageloch W; Isgro F; Koeth T; Manzl G; Weicker H
    Klin Wochenschr; 1989 Jun; 67(11):576-82. PubMed ID: 2747135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forearm exercise increases plasma hypoxanthine.
    Patterson VH; Kaiser KK; Brooke MH
    J Neurol Neurosurg Psychiatry; 1982 Jun; 45(6):552-3. PubMed ID: 7119819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ischaemic exercise test in myoadenylate deaminase deficiency and McArdle's disease: measurement of plasma adenosine, inosine and hypoxanthine.
    Sinkeler SP; Joosten EM; Wevers RA; Binkhorst RA; Oerlemans FT; van Bennekom CA; Coerwinkel MM; Oei TL
    Clin Sci (Lond); 1986 Apr; 70(4):399-401. PubMed ID: 3457669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low glucose-1, 6-bisphosphate and high fructose-2, 6-bisphosphate concentrations in muscles of patients with glycogenosis types VII and V.
    Yamada Y; Kono N; Nakajima H; Shimizu T; Kiyokawa H; Kawachi M; Ono A; Nishimura T; Kuwajima M; Tarui S
    Biochem Biophys Res Commun; 1991 Apr; 176(1):7-10. PubMed ID: 2018547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased ammonia production during forearm ischemic work test in McArdle's disease.
    Rumpf KW; Wagner H; Kaiser H; Meinck HM; Goebel HH; Scheler F
    Klin Wochenschr; 1981 Dec; 59(23):1319-20. PubMed ID: 6947119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.