These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38616533)

  • 1. More resource efficient recycling of copper and copper alloys by using X-ray fluorescence sorting systems: An investigation on the metallic fraction of mixed foundry residues.
    Kölking M; Flamme S; Heinrichs S; Schmalbein N; Jacob M
    Waste Manag Res; 2024 Apr; ():734242X241241601. PubMed ID: 38616533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface properties.
    Pfandl K; Küppers B; Scheiber S; Stockinger G; Holzer J; Pomberger R; Antrekowitsch H; Vollprecht D
    Waste Manag Res; 2020 Feb; 38(2):111-121. PubMed ID: 31621535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods.
    Van den Eynde S; Bracquené E; Diaz-Romero D; Zaplana I; Engelen B; Duflou JR; Peeters JR
    Waste Manag; 2022 Jan; 137():231-240. PubMed ID: 34801956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit.
    Wang T; Berrill P; Zimmerman JB; Hertwich EG
    Environ Sci Technol; 2021 Apr; 55(8):5485-5495. PubMed ID: 33783185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion-induced release of Cu and Zn into rainwater from brass, bronze and their pure metals. A 2-year field study.
    Herting G; Goidanich S; Odnevall Wallinder I; Leygraf C
    Environ Monit Assess; 2008 Sep; 144(1-3):455-61. PubMed ID: 17985207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Risk of exposure to metals in the production and processing of copper alloys].
    Crippa M; Apostoli P; Quarta C; Alessio L
    Med Lav; 1991; 82(3):261-9. PubMed ID: 1795671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal Recycling of Steel Scrap and Alloying Elements: Input-Output based Linear Programming Method with Its Application to End-of-Life Vehicles in Japan.
    Ohno H; Matsubae K; Nakajima K; Kondo Y; Nakamura S; Fukushima Y; Nagasaka T
    Environ Sci Technol; 2017 Nov; 51(22):13086-13094. PubMed ID: 29111691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A solid-state electrolysis process for upcycling aluminium scrap.
    Lu X; Zhang Z; Hiraki T; Takeda O; Zhu H; Matsubae K; Nagasaka T
    Nature; 2022 Jun; 606(7914):511-515. PubMed ID: 35417651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of Non-Ferrous Metals from PCBs Scrap by Liquation from Lead.
    Wędrychowicz M; Piotrowicz A; Skrzekut T; Noga P; Bydalek A
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous material flow analysis of nickel, chromium, and molybdenum used in alloy steel by means of input-output analysis.
    Nakajima K; Ohno H; Kondo Y; Matsubae K; Takeda O; Miki T; Nakamura S; Nagasaka T
    Environ Sci Technol; 2013 May; 47(9):4653-60. PubMed ID: 23528100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.
    Rabah MA
    Waste Manag; 2004; 24(2):119-26. PubMed ID: 14761750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated capture of copper scrap and electrodeposition process to enrich and prepare pure palladium for recycling of spent catalyst from automobile.
    Zhang L; Song Q; Liu Y; Xu Z
    Waste Manag; 2020 May; 108():172-182. PubMed ID: 32360998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying Recycling and Losses of Cr and Ni in Steel Throughout Multiple Life Cycles Using MaTrace-Alloy.
    Nakamura S; Kondo Y; Nakajima K; Ohno H; Pauliuk S
    Environ Sci Technol; 2017 Sep; 51(17):9469-9476. PubMed ID: 28806506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.
    Løvik AN; Modaresi R; Müller DB
    Environ Sci Technol; 2014 Apr; 48(8):4257-65. PubMed ID: 24655476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of X-ray fluorescence and wet chemical analysis for lead on air filters from different personal samplers used in a bronze foundry.
    Harper M; Pacolay B; Andrew ME
    J Environ Monit; 2005 Jun; 7(6):592-7. PubMed ID: 15931420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matisse to Picasso: a compositional study of modern bronze sculptures.
    Young ML; Schnepp S; Casadio F; Lins A; Meighan M; Lambert JB; Dunand DC
    Anal Bioanal Chem; 2009 Sep; 395(1):171-84. PubMed ID: 19629458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on the recycling of scrap integrated circuits by leaching.
    Lee CH; Tang LW; Popuri SR
    Waste Manag Res; 2011 Jul; 29(7):677-85. PubMed ID: 20837559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting, smelting, and recycling: A regional study around the Late Bronze Age mining site of Prigglitz-Gasteil, Lower Austria.
    Mödlinger M; Trebsche P; Sabatini B
    PLoS One; 2021; 16(7):e0254096. PubMed ID: 34270592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recoveries of rare elements Ga, Ge, In and Sn from waste electric and electronic equipment through secondary copper smelting.
    Avarmaa K; Yliaho S; Taskinen P
    Waste Manag; 2018 Jan; 71():400-410. PubMed ID: 29032002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.