These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38616650)

  • 1. Nanostructure-based orbital angular momentum encryption and multiplexing.
    Ouyang X; Du K; Zeng Y; Song Q; Xiao S
    Nanoscale; 2024 May; 16(18):8807-8819. PubMed ID: 38616650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarized deep diffractive neural network for sorting, generation, multiplexing, and de-multiplexing of orbital angular momentum modes.
    Zhang J; Ye Z; Yin J; Lang L; Jiao S
    Opt Express; 2022 Jul; 30(15):26728-26741. PubMed ID: 36236859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Limits of Effective Degrees of Freedom in UCA based Orbital Angular Momentum Multiplexed Communications.
    Li Z; Qu F; Wei Y; Yang G; Xu W; Xu J
    Sci Rep; 2020 Mar; 10(1):5216. PubMed ID: 32251300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing.
    Willner AE; Ren Y; Xie G; Yan Y; Li L; Zhao Z; Wang J; Tur M; Molisch AF; Ashrafi S
    Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2087):. PubMed ID: 28069770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Efficiency Multi-Channel Orbital Angular Momentum Multiplexing Enabled by the Angle-Dispersive Metasurface.
    Li Y; Xia Q; Yang J; Deng G; Yin Z
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance evaluation of analog signal transmission in an orbital angular momentum multiplexing system.
    Li S; Wang J
    Opt Lett; 2015 Mar; 40(5):760-3. PubMed ID: 25723426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed manipulation of orbital angular momentum and wavelength in metasurfaces based on arbitrary complex-amplitude control.
    He G; Zheng Y; Zhou C; Li S; Shi Z; Deng Y; Zhou ZK
    Light Sci Appl; 2024 Apr; 13(1):98. PubMed ID: 38678015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications.
    Zhou H; Su X; Minoofar A; Zhang R; Zou K; Song H; Pang K; Song H; Hu N; Zhao Z; Almaiman A; Zach S; Tur M; Molisch AF; Sasaki H; Lee D; Willner AE
    Opt Express; 2022 Jul; 30(14):25418-25432. PubMed ID: 36237073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of orbital angular momentum spectra of multiplexing optical vortices.
    Fu S; Zhang S; Wang T; Gao C
    Opt Express; 2016 Mar; 24(6):6240-8. PubMed ID: 27136817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays.
    Kim G; Kim S; Kim H; Lee J; Badloe T; Rho J
    Nanoscale; 2022 Mar; 14(12):4380-4410. PubMed ID: 35266481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer.
    Du J; Wang J
    Opt Express; 2018 May; 26(10):13183-13194. PubMed ID: 29801345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of electromagnetic vortex beams using modified dynamic mode decomposition in spatial angular domain.
    Zhang Y; Chen MLN; Jun Jiang L
    Opt Express; 2019 Sep; 27(20):27702-27711. PubMed ID: 31684533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angular Multiplexing Nanoprinting with Independent Amplitude Encryption Based on Visible-Frequency Metasurfaces.
    Tang J; Li Z; Wan S; Wang Z; Wan C; Dai C; Li Z
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38623-38628. PubMed ID: 34369745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing.
    Ren Y; Wang Z; Xie G; Li L; Cao Y; Liu C; Liao P; Yan Y; Ahmed N; Zhao Z; Willner A; Ashrafi N; Ashrafi S; Linquist RD; Bock R; Tur M; Molisch AF; Willner AE
    Opt Lett; 2015 Sep; 40(18):4210-3. PubMed ID: 26371898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dense Space-Division Multiplexing Exploiting Multi-Ring Perfect Vortex.
    Liu X; Deng D; Yang Z; Li Y
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimension and high-resolution demultiplexing of coaxial multiple orbital angular momentum beams.
    Yang J; Liu Z; Gao S; Huang X; Feng Y; Liu W; Li Z
    Opt Express; 2019 Feb; 27(4):4338-4345. PubMed ID: 30876050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending orbital angular momentum multiplexing to radially high orders for massive mode channels in fiber transmission.
    Kong A; Lei T; Wang D; Tu J; Shen L; Zhang L; Luo J; Fang J; Zhang W; Yuna X
    Opt Lett; 2023 Jul; 48(14):3717-3720. PubMed ID: 37450733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable switching of orbital-angular-momentum-based free-space data channels.
    Yue Y; Huang H; Ahmed N; Yan Y; Ren Y; Xie G; Rogawski D; Tur M; Willner AE
    Opt Lett; 2013 Dec; 38(23):5118-21. PubMed ID: 24281524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and analysis of a compact micro-ring resonator signal emitter to reduce the uniformity-induced phase distortion and crosstalk in orbital angular momentum (OAM) division multiplexing.
    Jian YH; Chow CW
    Opt Express; 2023 Jan; 31(2):810-825. PubMed ID: 36785130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-capacity and multi-dimensional orbital angular momentum multiplexing holography.
    Zhang N; Xiong B; Zhang X; Yuan X
    Opt Express; 2023 Sep; 31(20):31884-31897. PubMed ID: 37859003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.