These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38616720)

  • 21. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials.
    Pu X; Jiang B; Wang X; Liu W; Dong L; Kang F; Xu C
    Nanomicro Lett; 2020 Jul; 12(1):152. PubMed ID: 34138177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development, Essence, and Application of a Metal-Catalysis Battery.
    Feng Y; Yan S; Zhang X; Wang Y
    Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amorphous K-Buserite Microspheres for High-Performance Aqueous Zn-Ion Batteries and Hybrid Supercapacitors.
    Wang ZQ; Chen HM; Liu XD; Song LY; Zhang BS; Yang YG; Zhang ZC; Li Q; Gao TQ; Bai J; Lau WM; Zhou D
    Adv Sci (Weinh); 2023 May; 10(13):e2207329. PubMed ID: 36825686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boosting Aqueous Zn/MnO
    Han K; Wang Z; An F; Liu Y; Qu X; Xue J; Li P
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4316-4325. PubMed ID: 35020350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable structure and fast ion diffusion: N-doped VO
    Hao K; Sheng Z; Qi P; Lu Y; Liu G; Chen M; Wu H; Tang Y
    J Colloid Interface Sci; 2023 Aug; 644():275-284. PubMed ID: 37120876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper Collector Generated Cu
    Zhang G; Liu X; Wang L; Xing G; Tian C; Fu H
    ACS Nano; 2022 Oct; 16(10):17139-17148. PubMed ID: 36130105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox Catalysis Promoted Activation of Sulfur Redox Chemistry for Energy-Dense Flexible Solid-State Zn-S Battery.
    Zhang H; Shang Z; Luo G; Jiao S; Cao R; Chen Q; Lu K
    ACS Nano; 2022 May; 16(5):7344-7351. PubMed ID: 34889091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast-Charging Zn Battery Chemistry.
    Cai Z; Wang J; Lu Z; Zhan R; Ou Y; Wang L; Dahbi M; Alami J; Lu J; Amine K; Sun Y
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202116560. PubMed ID: 35088500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Naphthalene dianhydride organic anode for a 'rocking-chair' zinc-proton hybrid ion battery.
    Ghosh M; Vijayakumar V; Kurian M; Dilwale S; Kurungot S
    Dalton Trans; 2021 Mar; 50(12):4237-4243. PubMed ID: 33751012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Six-Electron-Redox Iodine Electrodes for High-Energy Aqueous Batteries.
    Bi S; Wang H; Zhang Y; Yang M; Li Q; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312982. PubMed ID: 37861096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives.
    Wang T; Li C; Xie X; Lu B; He Z; Liang S; Zhou J
    ACS Nano; 2020 Dec; 14(12):16321-16347. PubMed ID: 33314908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Pyrophosphate Bifunctional Cathode with Inductive Effect for High-Voltage and Self-Charging Zinc Ion Battery.
    Deng Y; Li H; Yan Y; Zhang M; Chang P; Mei H; Cheng L; Zhang L
    ChemSusChem; 2024 Jun; 17(11):e202301818. PubMed ID: 38566411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS
    Bhoyate S; Mhin S; Jeon JE; Park K; Kim J; Choi W
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27249-27257. PubMed ID: 32437120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries.
    Li C; Kingsbury R; Thind AS; Shyamsunder A; Fister TT; Klie RF; Persson KA; Nazar LF
    Nat Commun; 2023 May; 14(1):3067. PubMed ID: 37244907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage.
    Dong L; Yang W; Yang W; Wang C; Li Y; Xu C; Wan S; He F; Kang F; Wang G
    Nanomicro Lett; 2019 Oct; 11(1):94. PubMed ID: 34138030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast-Charging Zn-Air Batteries with Long Lifetime Enabled by Reconstructed Amorphous Multi-Metallic Sulfide.
    Wang A; Zhang X; Gao S; Zhao C; Kuang S; Lu S; Niu J; Wang G; Li W; Chen D; Zhang H; Zhou X; Zhang S; Zhang B; Wang W
    Adv Mater; 2022 Dec; 34(49):e2204247. PubMed ID: 36177691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions.
    Dai C; Hu L; Chen H; Jin X; Han Y; Wang Y; Li X; Zhang X; Song L; Xu M; Cheng H; Zhao Y; Zhang Z; Liu F; Qu L
    Nat Commun; 2022 Apr; 13(1):1863. PubMed ID: 35387998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hexagonal WO
    Chen X; Huang R; Ding M; He H; Wang F; Yin S
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3961-3969. PubMed ID: 35025198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bidirectional Interface Protection of a Concentrated Electrolyte, Enabling High-Voltage and Long-Life Aqueous Zn Hybrid-Ion Batteries.
    Deng W; Li Z; Chen Y; Shen N; Zhang M; Yuan X; Hu J; Zhu J; Huang C; Li C; Li R
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35864-35872. PubMed ID: 35900098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.