These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38617060)

  • 1. A prenatal acoustic signal of heat reduces a biomarker of chronic stress at adulthood across seasons.
    Udino E; Oscos-Snowball MA; Buchanan KL; Mariette MM
    Front Physiol; 2024; 15():1348993. PubMed ID: 38617060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A prenatal acoustic signal of heat affects thermoregulation capacities at adulthood in an arid-adapted bird.
    Pessato A; McKechnie AE; Mariette MM
    Sci Rep; 2022 Apr; 12(1):5842. PubMed ID: 35393484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prenatal acoustic programming of mitochondrial function for high temperatures in an arid-adapted bird.
    Udino E; George JM; McKenzie M; Pessato A; Crino OL; Buchanan KL; Mariette MM
    Proc Biol Sci; 2021 Dec; 288(1964):20211893. PubMed ID: 34875198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of acute exposure to high ambient temperature on the thermal, metabolic and hygric physiology of a small desert bird.
    Cooper CE; Hurley LL; Griffith SC
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Jun; 244():110684. PubMed ID: 32114093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated heat waves reduce cognitive and motor performance of an endotherm.
    Danner RM; Coomes CM; Derryberry EP
    Ecol Evol; 2021 Mar; 11(5):2261-2272. PubMed ID: 33717453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress Responses to Heat Exposure in Three Species of Australian Desert Birds.
    Xie S; Romero LM; Htut ZW; McWhorter TJ
    Physiol Biochem Zool; 2017; 90(3):348-358. PubMed ID: 28384428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonistic Responses of Exposure to Sublethal Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal Performance.
    Gilbert AL; Miles DB
    Am Nat; 2019 Sep; 194(3):344-355. PubMed ID: 31553209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Heat Waves During Post-natal Development on Mitochondrial and Whole Body Physiology: An Experimental Study in Zebra Finches.
    Ton R; Stier A; Cooper CE; Griffith SC
    Front Physiol; 2021; 12():661670. PubMed ID: 33986695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic flexibility in heat production and heat loss in response to thermal and hydric acclimation in the zebra finch, a small arid-zone passerine.
    Wojciechowski MS; Kowalczewska A; Colominas-Ciuró R; Jefimow M
    J Comp Physiol B; 2021 Jan; 191(1):225-239. PubMed ID: 33070274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parental influence on begging call structure in zebra finches (Taeniopygia guttata): evidence of early vocal plasticity.
    Villain AS; Boucaud IC; Bouchut C; Vignal C
    R Soc Open Sci; 2015 Nov; 2(11):150497. PubMed ID: 26716009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genetic basis and adult reproductive consequences of developmental thermal plasticity.
    Rodrigues LR; Zwoinska MK; Wiberg RAW; Snook RR
    J Anim Ecol; 2022 Jun; 91(6):1119-1134. PubMed ID: 35060127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep body and surface temperature responses to hot and cold environments in the zebra finch.
    Szafrańska PA; Andreasson F; Nord A; Nilsson JÅ
    J Therm Biol; 2020 Dec; 94():102776. PubMed ID: 33292974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Too hot to handle? Behavioural plasticity during incubation in a small, Australian passerine.
    Sharpe LL; Bayter C; Gardner JL
    J Therm Biol; 2021 May; 98():102921. PubMed ID: 34016345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuating heat stress during development exposes reproductive costs and putative benefits.
    Rodrigues LR; McDermott HA; Villanueva I; Djukarić J; Ruf LC; Amcoff M; Snook RR
    J Anim Ecol; 2022 Feb; 91(2):391-403. PubMed ID: 34775602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoregulatory consequences of growing up during a heatwave or a cold snap in Japanese quail.
    Persson E; Ó Cuív C; Nord A
    J Exp Biol; 2024 Jan; 227(2):. PubMed ID: 38073475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of short-term elevated temperature stress on winter-acclimated individuals of the marine gastropod Crepidula fornicata.
    Pechenik JA; Chaparro OR; Lazarus ZM; Tellado GV; Ostapovich EM; Clark D
    Mar Environ Res; 2020 Dec; 162():105180. PubMed ID: 33126112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential benefits of cool roofs in reducing heat-related mortality during heatwaves in a European city.
    Macintyre HL; Heaviside C
    Environ Int; 2019 Jun; 127():430-441. PubMed ID: 30959308
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.