These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38617178)

  • 1. Deep learning-based reconstruction enhances image quality and improves diagnosis in magnetic resonance imaging of the shoulder joint.
    Liu Z; Wen B; Wang Z; Wang K; Xie L; Kang Y; Tao Q; Wang W; Zhang Y; Cheng J; Zhang Y
    Quant Imaging Med Surg; 2024 Apr; 14(4):2840-2856. PubMed ID: 38617178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time.
    Kaniewska M; Deininger-Czermak E; Getzmann JM; Wang X; Lohezic M; Guggenberger R
    Eur Radiol; 2023 Mar; 33(3):1513-1525. PubMed ID: 36166084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers.
    Dratsch T; Siedek F; Zäske C; Sonnabend K; Rauen P; Terzis R; Hahnfeldt R; Maintz D; Persigehl T; Bratke G; Iuga A
    Eur Radiol Exp; 2023 Oct; 7(1):66. PubMed ID: 37880546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence.
    Shanbhogue K; Tong A; Smereka P; Nickel D; Arberet S; Anthopolos R; Chandarana H
    Eur Radiol; 2021 Nov; 31(11):8447-8457. PubMed ID: 33961086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI.
    Yoo H; Yoo RE; Choi SH; Hwang I; Lee JY; Seo JY; Koh SY; Choi KS; Kang KM; Yun TJ
    Eur Radiol; 2023 Dec; 33(12):8656-8668. PubMed ID: 37498386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated High-Resolution Deep Learning Reconstruction Turbo Spin Echo MRI of the Knee at 7 T.
    Marth AA; von Deuster C; Sommer S; Feuerriegel GC; Goller SS; Sutter R; Nanz D
    Invest Radiol; 2024 Dec; 59(12):831-837. PubMed ID: 38960863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance shoulder imaging using deep learning-based algorithm.
    Liu J; Li W; Li Z; Yang J; Wang K; Cao X; Qin N; Xue K; Dai Y; Wu P; Qiu J
    Eur Radiol; 2023 Jul; 33(7):4864-4874. PubMed ID: 36826500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination Use of Compressed Sensing and Deep Learning for Shoulder Magnetic Resonance Imaging With Various Sequences.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Miyamoto T; Hirai T
    J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):277-283. PubMed ID: 36944152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Faster acquisition of magnetic resonance imaging sequences of the knee via deep learning reconstruction: a volunteer study.
    Akai H; Yasaka K; Sugawara H; Furuta T; Tajima T; Kato S; Yamaguchi H; Ohtomo K; Abe O; Kiryu S
    Clin Radiol; 2024 Jun; 79(6):453-459. PubMed ID: 38614869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion-robust MR imaging of the shoulder using compressed SENSE MultiVane.
    Niitsu M; Saruya S; Sakaguchi K; Watarai K; Yoneyama M; Katsumata Y; Inoue K; Kozawa E
    Eur J Radiol Open; 2022; 9():100450. PubMed ID: 36386762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction.
    Hahn S; Yi J; Lee HJ; Lee Y; Lim YJ; Bang JY; Kim H; Lee J
    AJR Am J Roentgenol; 2022 Mar; 218(3):506-516. PubMed ID: 34523950
    [No Abstract]   [Full Text] [Related]  

  • 12. The rotating stretched curved planar reconstruction of 3D-FIESTA MR imaging for evaluating the anterior cruciate ligament of the knee joint.
    Zhang J; Hao D; Duan F; Yu T; Zhang C; Che J
    Magn Reson Imaging; 2019 Jan; 55():46-51. PubMed ID: 30223006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PROPELLER technique to improve image quality of MRI of the shoulder.
    Dietrich TJ; Ulbrich EJ; Zanetti M; Fucentese SF; Pfirrmann CW
    AJR Am J Roentgenol; 2011 Dec; 197(6):W1093-100. PubMed ID: 22109324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of an accelerated 2D-multi-contrast knee MRI protocol using deep-learning image reconstruction: a prospective intraindividual comparison with a standard MRI protocol.
    Herrmann J; Keller G; Gassenmaier S; Nickel D; Koerzdoerfer G; Mostapha M; Almansour H; Afat S; Othman AE
    Eur Radiol; 2022 Sep; 32(9):6215-6229. PubMed ID: 35389046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and Evaluation of a Deep Learning Reconstruction Approach with Denoising for Orthopedic MRI.
    Koch KM; Sherafati M; Arpinar VE; Bhave S; Ausman R; Nencka AS; Lebel RM; McKinnon G; Kaushik SS; Vierck D; Stetz MR; Fernando S; Mannem R
    Radiol Artif Intell; 2021 Nov; 3(6):e200278. PubMed ID: 34870214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective Comparison of Standard and Deep Learning-reconstructed Turbo Spin-Echo MRI of the Shoulder.
    Xie Y; Tao H; Li X; Hu Y; Liu C; Zhou B; Cai J; Nickel D; Fu C; Xiong B; Chen S
    Radiology; 2024 Jan; 310(1):e231405. PubMed ID: 38193842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility and clinical usefulness of deep learning-accelerated MRI for acute painful fracture patients wearing a splint: A prospective comparative study.
    Roh S; Park JI; Kim GY; Yoo HJ; Nickel D; Koerzdoerfer G; Sung J; Oh J; Chae HD; Hong SH; Choi JY
    PLoS One; 2023; 18(6):e0287903. PubMed ID: 37379272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain.
    Feuerriegel GC; Weiss K; Kronthaler S; Leonhardt Y; Neumann J; Wurm M; Lenhart NS; Makowski MR; Schwaiger BJ; Woertler K; Karampinos DC; Gersing AS
    Eur Radiol; 2023 Jul; 33(7):4875-4884. PubMed ID: 36806569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-accelerated T2-weighted imaging versus conventional T2-weighted imaging in the female pelvic cavity: image quality and diagnostic performance.
    Kim H; Choi MH; Lee YJ; Han D; Mostapha M; Nickel D
    Acta Radiol; 2024 May; 65(5):499-505. PubMed ID: 38343091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of a Deep Learning-Accelerated vs. Conventional T2-Weighted Sequence in Biparametric MRI of the Prostate.
    Tong A; Bagga B; Petrocelli R; Smereka P; Vij A; Qian K; Grimm R; Kamen A; Keerthivasan MB; Nickel MD; von Busch H; Chandarana H
    J Magn Reson Imaging; 2023 Oct; 58(4):1055-1064. PubMed ID: 36651358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.