These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 38617262)

  • 21. Low-cost and High-throughput RNA-seq Library Preparation for Illumina Sequencing from Plant Tissue.
    Bjornson M; Kajala K; Zipfel C; Ding P
    Bio Protoc; 2020 Oct; 10(20):e3799. PubMed ID: 33659453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioinformatics approach to spatially resolved transcriptomics.
    Krešimir Lukić I
    Emerg Top Life Sci; 2021 Nov; 5(5):669-674. PubMed ID: 34369559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain.
    Zhang Y; Miller JA; Park J; Lelieveldt BP; Long B; Abdelaal T; Aevermann BD; Biancalani T; Comiter C; Dzyubachyk O; Eggermont J; Langseth CM; Petukhov V; Scalia G; Vaishnav ED; Zhao Y; Lein ES; Scheuermann RH
    Sci Rep; 2023 Jun; 13(1):9567. PubMed ID: 37311768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Space: the final frontier - achieving single-cell, spatially resolved transcriptomics in plants.
    Gurazada SGR; Cox KL; Czymmek KJ; Meyers BC
    Emerg Top Life Sci; 2021 May; 5(2):179-188. PubMed ID: 33522561
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Si Y; Lee C; Hwang Y; Yun JH; Cheng W; Cho CS; Quiros M; Nusrat A; Zhang W; Jun G; Zöllner S; Lee JH; Kang HM
    bioRxiv; 2023 Nov; ():. PubMed ID: 37961699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics.
    Shen X; Zhao Y; Wang Z; Shi Q
    Lab Chip; 2022 Dec; 22(24):4774-4791. PubMed ID: 36254761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial Transcriptomics in Kidney Tissue.
    Raghubar AM; Crawford J; Jones K; Lam PY; Andersen SB; Matigian NA; Ng MSY; Healy H; Kassianos AJ; Mallett AJ
    Methods Mol Biol; 2023; 2664():233-282. PubMed ID: 37423994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial Transcriptomics: Emerging Technologies in Tissue Gene Expression Profiling.
    Robles-Remacho A; Sanchez-Martin RM; Diaz-Mochon JJ
    Anal Chem; 2023 Oct; 95(42):15450-15460. PubMed ID: 37814884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Innovative super-resolution in spatial transcriptomics: a transformer model exploiting histology images and spatial gene expression.
    Zhao C; Xu Z; Wang X; Tao S; MacDonald WA; He K; Poholek AC; Chen K; Huang H; Chen W
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38436557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in spatially resolved transcriptomics: challenges and opportunities.
    Lee J; Yoo M; Choi J
    BMB Rep; 2022 Mar; 55(3):113-124. PubMed ID: 35168703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-Cell RNA Sequencing with Spatial Transcriptomics of Cancer Tissues.
    Ahmed R; Zaman T; Chowdhury F; Mraiche F; Tariq M; Ahmad IS; Hasan A
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data.
    Shan X; Chen J; Dong K; Zhou W; Zhang S
    J Comput Biol; 2022 Jul; 29(7):650-663. PubMed ID: 35727094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TIST: Transcriptome and Histopathological Image Integrative Analysis for Spatial Transcriptomics.
    Shan Y; Zhang Q; Guo W; Wu Y; Miao Y; Xin H; Lian Q; Gu J
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):974-988. PubMed ID: 36549467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Introducing single cell stereo-sequencing technology to transform the plant transcriptome landscape.
    Bawa G; Liu Z; Yu X; Tran LP; Sun X
    Trends Plant Sci; 2024 Feb; 29(2):249-265. PubMed ID: 37914553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing.
    Heydari AA; Sindi SS
    Biophys Rev (Melville); 2023 Mar; 4(1):011306. PubMed ID: 38505815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a versatile LCM-Seq method for spatial transcriptomics of fluorescently tagged cholinergic neuron populations.
    Rumpler É; Göcz B; Skrapits K; Sárvári M; Takács S; Farkas I; Póliska S; Papp M; Solymosi N; Hrabovszky E
    J Biol Chem; 2023 Sep; 299(9):105121. PubMed ID: 37536628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. stDiff: a diffusion model for imputing spatial transcriptomics through single-cell transcriptomics.
    Li K; Li J; Tao Y; Wang F
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38628114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing.
    Liu J; Tran V; Vemuri VNP; Byrne A; Borja M; Kim YJ; Agarwal S; Wang R; Awayan K; Murti A; Taychameekiatchai A; Wang B; Emanuel G; He J; Haliburton J; Oliveira Pisco A; Neff NF
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36526371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.