These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38617275)

  • 1. The structure of the monobactam-producing thioesterase domain of SulM forms a unique complex with the upstream carrier protein domain.
    Patel KD; Oliver RA; Lichstrahl MS; Li R; Townsend CA; Gulick AM
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of the monobactam-producing thioesterase domain of SulM forms a unique complex with the upstream carrier protein domain.
    Patel KD; Oliver RA; Lichstrahl MS; Li R; Townsend CA; Gulick AM
    J Biol Chem; 2024 Aug; 300(8):107489. PubMed ID: 38908753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Lactone formation during product release from a nonribosomal peptide synthetase.
    Schaffer JE; Reck MR; Prasad NK; Wencewicz TA
    Nat Chem Biol; 2017 Jul; 13(7):737-744. PubMed ID: 28504677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Characterization of the Sulfazecin Monobactam Biosynthetic Gene Cluster.
    Li R; Oliver RA; Townsend CA
    Cell Chem Biol; 2017 Jan; 24(1):24-34. PubMed ID: 28017601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase.
    Kreitler DF; Gemmell EM; Schaffer JE; Wencewicz TA; Gulick AM
    Nat Commun; 2019 Jul; 10(1):3432. PubMed ID: 31366889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary and functional analysis of an NRPS condensation domain integrates β-lactam, ᴅ-amino acid, and dehydroamino acid synthesis.
    Wheadon MJ; Townsend CA
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33893237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling of the reductase domain to elucidate the reaction mechanism of reduction of peptidyl thioester into its corresponding alcohol in non-ribosomal peptide synthetases.
    Manavalan B; Murugapiran SK; Lee G; Choi S
    BMC Struct Biol; 2010 Jan; 10():1. PubMed ID: 20067617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of a PCP-R didomain from an archaeal nonribosomal peptide synthetase reveals novel interdomain interactions.
    Deshpande S; Altermann E; Sarojini V; Lott JS; Lee TV
    J Biol Chem; 2021; 296():100432. PubMed ID: 33610550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Studies of Modular Nonribosomal Peptide Synthetases.
    Patel KD; Ahmed SF; MacDonald MR; Gulick AM
    Methods Mol Biol; 2023; 2670():17-46. PubMed ID: 37184698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Substrate-Like Probes for Trapping Late-Stage Intermediates in Nonribosomal Peptide Synthetase Condensation Domains.
    Wheadon MJ; Townsend CA
    ACS Chem Biol; 2022 Aug; 17(8):2046-2053. PubMed ID: 35914245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains.
    Mitchell CA; Shi C; Aldrich CC; Gulick AM
    Biochemistry; 2012 Apr; 51(15):3252-63. PubMed ID: 22452656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases.
    Chen WH; Li K; Guntaka NS; Bruner SD
    ACS Chem Biol; 2016 Aug; 11(8):2293-303. PubMed ID: 27294598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases.
    Kohli RM; Trauger JW; Schwarzer D; Marahiel MA; Walsh CT
    Biochemistry; 2001 Jun; 40(24):7099-108. PubMed ID: 11401555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity.
    Bloudoff K; Schmeing TM
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1587-1604. PubMed ID: 28526268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Biology of Nonribosomal Peptide Synthetases.
    Miller BR; Gulick AM
    Methods Mol Biol; 2016; 1401():3-29. PubMed ID: 26831698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization.
    Shaw-Reid CA; Kelleher NL; Losey HC; Gehring AM; Berg C; Walsh CT
    Chem Biol; 1999 Jun; 6(6):385-400. PubMed ID: 10375542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Integrated β-Lactam Formation by a Nonribosomal Peptide Synthetase during Antibiotic Synthesis.
    Long DH; Townsend CA
    Biochemistry; 2018 Jun; 57(24):3353-3358. PubMed ID: 29701951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthetic Cyclization Catalysts for the Assembly of Peptide and Polyketide Natural Products.
    Adrover-Castellano ML; Schmidt JJ; Sherman DH
    ChemCatChem; 2021 May; 13(9):2095-2116. PubMed ID: 34335987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases.
    Ehmann DE; Trauger JW; Stachelhaus T; Walsh CT
    Chem Biol; 2000 Oct; 7(10):765-72. PubMed ID: 11033080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases.
    Schwarzer D; Mootz HD; Linne U; Marahiel MA
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14083-8. PubMed ID: 12384573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.