BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38617371)

  • 1. A conserved phenylalanine motif among Teleost fish provides insight for improving electromagnetic perception.
    Ricker B; Castellanos Franco EA; de Los Campos G; Pelled G; Gilad AA
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proposed three-phenylalanine motif involved in magnetoreception signalling of an Actinopterygii protein expressed in mammalian cells.
    Ricker B; Mitra S; Castellanos EA; Grady CJ; Woldring D; Pelled G; Gilad AA
    Open Biol; 2023 Nov; 13(11):230019. PubMed ID: 37989224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Electromagnetic Perceptive Gene Using Ferromagnetic Particles for the External Control of Calcium Ion Transport.
    Hwang J; Choi Y; Lee K; Krishnan V; Pelled G; Gilad AA; Choi J
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32075263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless control of cellular function by activation of a novel protein responsive to electromagnetic fields.
    Krishnan V; Park SA; Shin SS; Alon L; Tressler CM; Stokes W; Banerjee J; Sorrell ME; Tian Y; Fridman GY; Celnik P; Pevsner J; Guggino WB; Gilad AA; Pelled G
    Sci Rep; 2018 Jun; 8(1):8764. PubMed ID: 29884813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of myogenesis and adipogenesis by the electromagnetic perceptive gene.
    Hwang J; Jung HW; Kim KM; Jeong D; Lee JH; Hong JH; Jang WY
    Sci Rep; 2023 Dec; 13(1):21167. PubMed ID: 38036595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system.
    Dornburg A; Wcisel DJ; Zapfe K; Ferraro E; Roupe-Abrams L; Thompson AW; Braasch I; Ota T; Yoder JA
    Immunogenetics; 2021 Dec; 73(6):479-497. PubMed ID: 34510270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A putative design for the electromagnetic activation of split proteins for molecular and cellular manipulation.
    Grady CJ; Castellanos Franco EA; Schossau J; Ashbaugh RC; Pelled G; Gilad AA
    Front Bioeng Biotechnol; 2024; 12():1355915. PubMed ID: 38605993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First record of supernumerary (B) chromosomes in electric fish (Gymnotiformes) and the karyotype structure of three species of the same order from the upper Paraná River basin.
    Mendes VP; Portela-Castro AL; Júlio-Júnior HF
    Comp Cytogenet; 2012; 6(1):1-16. PubMed ID: 24260648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of a Novel MHC Class I Lineage in Teleost Fish which Shows Unprecedented Levels of Ectodomain Deterioration while Possessing an Impressive Cytoplasmic Tail Motif.
    Grimholt U; Tsukamoto K; Hashimoto K; Dijkstra JM
    Cells; 2019 Sep; 8(9):. PubMed ID: 31505831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive analysis of teleost MHC class I sequences.
    Grimholt U; Tsukamoto K; Azuma T; Leong J; Koop BF; Dijkstra JM
    BMC Evol Biol; 2015 Mar; 15():32. PubMed ID: 25888517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive Loss and Gain of Conserved Noncoding Elements During Early Teleost Evolution.
    Iliopoulou E; Papadogiannis V; Tsigenopoulos CS; Manousaki T
    Genome Biol Evol; 2024 Apr; 16(4):. PubMed ID: 38648507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-genome duplication and the functional diversification of teleost fish hemoglobins.
    Opazo JC; Butts GT; Nery MF; Storz JF; Hoffmann FG
    Mol Biol Evol; 2013 Jan; 30(1):140-53. PubMed ID: 22949522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrapod V1R-like ora genes in an early-diverging ray-finned fish species: the canonical six ora gene repertoire of teleost fish resulted from gene loss in a larger ancestral repertoire.
    Zapilko V; Korsching SI
    BMC Genomics; 2016 Jan; 17():83. PubMed ID: 26818853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic relationships of †Luisiella feruglioi (Bordas) and the recognition of a new clade of freshwater teleosts from the Jurassic of Gondwana.
    Sferco E; López-Arbarello A; Báez AM
    BMC Evol Biol; 2015 Dec; 15():268. PubMed ID: 26630925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin gene copies in Japanese eel originated in a teleost-specific genome duplication.
    Nakamura Y; Yasuike M; Mekuchi M; Iwasaki Y; Ojima N; Fujiwara A; Chow S; Saitoh K
    Zoological Lett; 2017; 3():18. PubMed ID: 29075512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four stanniocalcin genes in teleost fish: structure, phylogenetic analysis, tissue distribution and expression during hypercalcemic challenge.
    Schein V; Cardoso JC; Pinto PI; Anjos L; Silva N; Power DM; Canário AV
    Gen Comp Endocrinol; 2012 Jan; 175(2):344-56. PubMed ID: 22154646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication.
    Tingaud-Sequeira A; Chauvigné F; Fabra M; Lozano J; Raldúa D; Cerdà J
    BMC Evol Biol; 2008 Sep; 8():259. PubMed ID: 18811940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing the Spark: CRISPR/Cas9 Genome Editing in Weakly Electric Fish.
    Constantinou SJ; Nguyen L; Kirschbaum F; Salazar VL; Gallant JR
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31710047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution and Distribution of Teleost myomiRNAs: Functionally Diversified myomiRs in Teleosts.
    Siddique BS; Kinoshita S; Wongkarangkana C; Asakawa S; Watabe S
    Mar Biotechnol (NY); 2016 Jun; 18(3):436-47. PubMed ID: 27262998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetoreception in fish.
    Formicki K; Korzelecka-Orkisz A; Tański A
    J Fish Biol; 2019 Jul; 95(1):73-91. PubMed ID: 31054161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.