These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38617609)

  • 21. Electronic interaction between nitrogen atoms in doped graphene.
    Tison Y; Lagoute J; Repain V; Chacon C; Girard Y; Rousset S; Joucken F; Sharma D; Henrard L; Amara H; Ghedjatti A; Ducastelle F
    ACS Nano; 2015 Jan; 9(1):670-8. PubMed ID: 25558891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical reactivity and band-gap opening of graphene doped with gallium, germanium, arsenic, and selenium atoms.
    Denis PA
    Chemphyschem; 2014 Dec; 15(18):3994-4000. PubMed ID: 25349028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical Dopants on Edge of Holey Graphene Accelerate Electrochemical Hydrogen Evolution Reaction.
    Kumatani A; Miura C; Kuramochi H; Ohto T; Wakisaka M; Nagata Y; Ida H; Takahashi Y; Hu K; Jeong S; Fujita JI; Matsue T; Ito Y
    Adv Sci (Weinh); 2019 May; 6(10):1900119. PubMed ID: 31131204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Doping Graphene with Substitutional Mn.
    Lin PC; Villarreal R; Achilli S; Bana H; Nair MN; Tejeda A; Verguts K; De Gendt S; Auge M; Hofsäss H; De Feyter S; Di Santo G; Petaccia L; Brems S; Fratesi G; Pereira LMC
    ACS Nano; 2021 Mar; 15(3):5449-5458. PubMed ID: 33596385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alkaline earth atom doping-induced changes in the electronic and magnetic properties of graphene: a density functional theory study.
    Serraon ACF; Del Rosario JAD; Abel Chuang PY; Chong MN; Morikawa Y; Padama AAB; Ocon JD
    RSC Adv; 2021 Feb; 11(11):6268-6283. PubMed ID: 35423162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Difference in gating and doping effects on the band gap in bilayer graphene.
    Uchiyama T; Goto H; Akiyoshi H; Eguchi R; Nishikawa T; Osada H; Kubozono Y
    Sci Rep; 2017 Sep; 7(1):11322. PubMed ID: 28900237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predoped Oxygenated Defects Activate Nitrogen-Doped Graphene for the Oxygen Reduction Reaction.
    Jiang L; van Dijk B; Wu L; Maheu C; Hofmann JP; Tudor V; Koper MTM; Hetterscheid DGH; Schneider GF
    ACS Catal; 2022 Jan; 12(1):173-182. PubMed ID: 35028190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.
    Zhao P; Kim S; Chen X; Einarsson E; Wang M; Song Y; Wang H; Chiashi S; Xiang R; Maruyama S
    ACS Nano; 2014 Nov; 8(11):11631-8. PubMed ID: 25363605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of Magnetoresistance Polarity in BLG/SL-MoSe
    Khan MF; Rehman S; Rehman MA; Basit MA; Kim DK; Ahmed F; Khalil HMW; Akhtar I; Jun SC
    Nanoscale Res Lett; 2020 Jun; 15(1):136. PubMed ID: 32572648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defect and Doping Engineered Penta-graphene for Catalysis of Hydrogen Evolution Reaction.
    Hao J; Wei F; Zhang X; Li L; Zhang C; Liang D; Ma X; Lu P
    Nanoscale Res Lett; 2021 Aug; 16(1):130. PubMed ID: 34387780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orbital diamagnetism of weakly doped bilayer graphene in a magnetic field.
    Lv M; Wan S
    J Phys Condens Matter; 2011 Jun; 23(21):215306. PubMed ID: 21558597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailoring Electronic and Magnetic Properties of Graphene by Phosphorus Doping.
    Langer R; Błoński P; Hofer C; Lazar P; Mustonen K; Meyer JC; Susi T; Otyepka M
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34074-34085. PubMed ID: 32618184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comprehensive dataset on two-dimensional noble metals: Theoretical insights into physical properties and metal-support interactions.
    Shtepliuk I
    Data Brief; 2023 Dec; 51():109801. PubMed ID: 38053595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. First-principles study of Ni adatom migration on graphene with vacancies.
    Hernández-Vázquez EE; Munoz F; López-Moreno S; Morán-López JL
    RSC Adv; 2019 Jun; 9(33):18823-18834. PubMed ID: 35516868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Refractive index of graphene AA and AB stacked bilayers under the influence of relative planar twisting.
    Kumar A; Manjuladevi V; Gupta RK
    J Phys Condens Matter; 2021 Oct; 34(1):. PubMed ID: 34614485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping.
    Cabria I; López MJ; Alonso JA
    J Chem Phys; 2005 Nov; 123(20):204721. PubMed ID: 16351307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geometric stability, electronic structure, and intercalation mechanism of Co adatom anchors on graphene sheets.
    Tang Y; Chen W; Li C; Li W; Dai X
    J Phys Condens Matter; 2015 Jul; 27(25):255009. PubMed ID: 26057893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of single Fe atoms in graphene vacancies.
    Robertson AW; Montanari B; He K; Kim J; Allen CS; Wu YA; Olivier J; Neethling J; Harrison N; Kirkland AI; Warner JH
    Nano Lett; 2013 Apr; 13(4):1468-75. PubMed ID: 23517297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defect evolution behaviors from single sulfur point vacancies to line vacancies in monolayer molybdenum disulfide.
    Gao C; Yang X; Jiang M; Chen L; Chen Z; Singh CV
    Phys Chem Chem Phys; 2021 Sep; 23(35):19525-19536. PubMed ID: 34524293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.