BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38617961)

  • 1. Exploring the Effect of Relaxation Time, Natural Surfactant, and Potential Determining Ions (Ca
    Mohammadi A; Keradeh MP
    Heliyon; 2024 Apr; 10(7):e29247. PubMed ID: 38617961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the mechanism of interfacial tension reduction through the combination of low-salinity water and bacteria.
    Abdi A; Ranjbar B; Kazemzadeh Y; Aram F; Riazi M
    Sci Rep; 2024 May; 14(1):11408. PubMed ID: 38762671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the interactions between asphaltene and a low surface energy anionic surfactant under low and high brine salinity.
    Kiani S; Jones DR; Alexander S; Barron AR
    J Colloid Interface Sci; 2020 Jul; 571():307-317. PubMed ID: 32208201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sodium citrate on asphaltene film at the oil-water interface.
    Feng L; Manica R; Lu Y; Liu B; Lu H; Liu Q
    J Colloid Interface Sci; 2022 Nov; 625():24-32. PubMed ID: 35714405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic liquids adsorption and interfacial tension reduction for synthetic resinous and asphaltenic oils: salinity and pH effects.
    Moradi SE; Hosseini S; Akhlaghi N; Narimani M; Golab EG
    Sci Rep; 2024 Apr; 14(1):9420. PubMed ID: 38658645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Evidence of Salinity and pH Effects on the Interfacial Interactions of Asphaltene-Brine-Silica Systems.
    Liu F; Yang H; Chen T; Zhang S; Yu D; Chen Y; Xie Q
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32182670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brine-Oil Interfacial Tension Modeling: Assessment of Machine Learning Techniques Combined with Molecular Dynamics.
    Kirch A; Celaschi YM; de Almeida JM; Miranda CR
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15837-15843. PubMed ID: 32191023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Extended Surfactant Structure on the Interfacial Tension and Optimal Salinity of Dilute Solutions.
    He W; Ge J; Zhang G; Jiang P; Jin L
    ACS Omega; 2019 Jul; 4(7):12410-12417. PubMed ID: 31460359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipative Particle Dynamics-Based Simulation of the Effect of Asphaltene Structure on Oil-Water Interface Properties.
    Liang C; Liu X; Jiang H; Xu Y; Jia Y
    ACS Omega; 2023 Sep; 8(36):33083-33097. PubMed ID: 37720765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Investigation of LSW/Surfactant/Alkali Synergism for Enhanced Oil Recovery: Fluid-Fluid Interactions.
    Esfandiarian A; Azdarpour A; Santos RM; Mohammadian E; Hamidi H; Sedaghat M; Dehkordi PB
    ACS Omega; 2020 Nov; 5(46):30059-30072. PubMed ID: 33251441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Asphaltene Precipitation during CO
    Parsaei R; Kazemzadeh Y; Riazi M
    ACS Omega; 2020 Apr; 5(14):7877-7884. PubMed ID: 32309696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Asphaltene-Stearic Acid Competition at the Oil-Water Interface.
    Sauerer B; Stukan M; Buiting J; Abdallah W; Andersen S
    Langmuir; 2018 May; 34(19):5558-5573. PubMed ID: 29665685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salinity-Driven Structural and Viscosity Modulation of Confined Polar Oil Phases by Carbonated Brine Films: Novel Insights from Molecular Dynamics.
    Dastjerdi AM; Kharrat R; Niasar V; Ott H
    J Phys Chem B; 2024 Feb; 128(7):1780-1795. PubMed ID: 38334946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Investigation of the Synergistic Effect of Two Nonionic Surfactants on Interfacial Properties and Their Application in Enhanced Oil Recovery.
    Saw RK; Sinojiya D; Pillai P; Prakash S; Mandal A
    ACS Omega; 2023 Apr; 8(13):12445-12455. PubMed ID: 37033838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Analytical Model for Estimation of the Self-Diffusion Coefficient and Adsorption Kinetics of Surfactants Using Dynamic Interfacial Tension Measurements.
    Mohammadi M; Zirrahi M; Hassanzadeh H
    J Phys Chem B; 2020 Apr; 124(15):3206-3213. PubMed ID: 32212708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the Impact of Ethylenediaminetetraacetic Acid Chelating Agents on the Oil Recovery Processes: An Insight into Its Role in Fluid-Fluid and Rock-Fluid Interactions.
    Mohammadi Khanghah A; Parhizgar Keradeh M
    Langmuir; 2024 Apr; 40(14):7532-7549. PubMed ID: 38532621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of adsorbed layers of asphaltenes at oil-water interfaces: A novel experimental protocol.
    Ashoorian S; Javadi A; Hosseinpour N; Husein M
    J Colloid Interface Sci; 2021 Jul; 594():80-91. PubMed ID: 33756371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and Molecular Dynamics Simulation to Investigate Oil Adsorption and Detachment from Sandstone/Quartz Surface by Low-Salinity Surfactant Brines.
    Maiki EP; Sun R; Ren S; AlRassas AM
    ACS Omega; 2024 May; 9(18):20277-20292. PubMed ID: 38737054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Transport across Oil-Brine Interfaces Impacts Interfacial Tension: Time-Effects in Buoyant and Pendant Drop Measurements.
    Binabdi A; Palm-Henriksen G; Olesen KB; Andersson MP; Sølling TI
    Langmuir; 2021 Jan; 37(1):585-595. PubMed ID: 33382630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of Water/Oil Interfacial Tension by Model Asphaltenes: The Governing Role of Surface Concentration.
    Jian C; Poopari MR; Liu Q; Zerpa N; Zeng H; Tang T
    J Phys Chem B; 2016 Jun; 120(25):5646-54. PubMed ID: 27268710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.