These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38617961)

  • 41. Interfacial Properties, Wettability Alteration and Emulsification Properties of an Organic Alkali-Surface Active Ionic Liquid System: Implications for Enhanced Oil Recovery.
    Tackie-Otoo BN; Ayoub Mohammed MA; Zalghani HABM; Hassan AM; Murungi PI; Tabaaza GA
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408664
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wettability of Calcite Surfaces: Impacts of Brine Ionic Composition and Oil Phase Polarity at Elevated Temperature and Pressure Conditions.
    Xie Y; Khishvand M; Piri M
    Langmuir; 2020 Jun; 36(22):6079-6088. PubMed ID: 32388994
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular Dynamics Simulations Study on the Shear Viscosity, Density, and Equilibrium Interfacial Tensions of CO
    Aminian A; ZareNezhad B
    J Phys Chem B; 2021 Mar; 125(10):2707-2718. PubMed ID: 33689346
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of Oil-Displacing Agent Composition on Oil/Water Interface Stability of the Asphaltene-Rich ASP Flooding-Produced Water.
    Li X; Liu D; Sun H; Li X
    Langmuir; 2022 Mar; 38(11):3329-3338. PubMed ID: 35261247
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adsorption of Asphaltenes at Model Oil/Brine Interface: Influence of Solvent Polarity.
    Wang W; Sheng F; Ou G; Zhao Y; Sun G
    ACS Omega; 2024 May; 9(18):19879-19891. PubMed ID: 38737055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Asphaltene self-association and water-in-hydrocarbon emulsions.
    Sztukowski DM; Jafari M; Alboudwarej H; Yarranton HW
    J Colloid Interface Sci; 2003 Sep; 265(1):179-86. PubMed ID: 12927181
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption kinetics of asphaltenes at the oil-water interface and nanoaggregation in the bulk.
    Rane JP; Harbottle D; Pauchard V; Couzis A; Banerjee S
    Langmuir; 2012 Jul; 28(26):9986-95. PubMed ID: 22680071
    [TBL] [Abstract][Full Text] [Related]  

  • 48. pH-Switchable IFT variations and emulsions based on the dynamic noncovalent surfactant/salt assembly at the water/oil interface.
    Jia H; Leng X; Lian P; Han Y; Wang Q; Wang S; Sun T; Liang Y; Huang P; Lv K
    Soft Matter; 2019 Jul; 15(27):5529-5536. PubMed ID: 31241648
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Asphaltene aggregation and impact of alkylphenols.
    Goual L; Sedghi M; Wang X; Zhu Z
    Langmuir; 2014 May; 30(19):5394-403. PubMed ID: 24784502
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanistic understanding of asphaltene precipitation and oil recovery enhancement using SiO
    Shadervan A; Jafari A; Teimouri A; Gharibshahi R; Dehaghani AHS
    Sci Rep; 2024 Jul; 14(1):15249. PubMed ID: 38956269
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterizing the impact of surfactant structure on interfacial tension: a molecular dynamics study.
    Liu ZY; Wang C; Zhou H; Wang Y; Zhang L; Zhang L; Zhao S
    J Mol Model; 2017 Apr; 23(4):112. PubMed ID: 28289954
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Asphaltene Mesoscale Aggregation Behavior in Organic Solvents-A Brownian Dynamics Study.
    Ahmadi M; Hassanzadeh H; Abedi J
    J Phys Chem B; 2018 Sep; 122(35):8477-8492. PubMed ID: 30106586
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentrations.
    Rosen MJ; Wang H; Shen P; Zhu Y
    Langmuir; 2005 Apr; 21(9):3749-56. PubMed ID: 15835933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular Dynamics Studies on Effective Surface-Active Additives: Toward Hard Water-Resistant Chemical Flooding for Enhanced Oil Recovery.
    Nan Y; Li W; Jin Z
    Langmuir; 2022 Apr; 38(16):4802-4811. PubMed ID: 35417175
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental study and modelling of asphaltene deposition on metal surfaces with superhydrophobic and low sliding angle inner coatings.
    Haji-Savameri M; Norouzi-Apourvari S; Irannejad A; Hemmati-Sarapardeh A; Schaffie M; Mosavi A
    Sci Rep; 2021 Aug; 11(1):16812. PubMed ID: 34413341
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synergistic effects of surfactants and heterogeneous nanoparticles at oil-water interface: Insights from computations.
    Vu TV; Papavassiliou DV
    J Colloid Interface Sci; 2019 Oct; 553():50-58. PubMed ID: 31185383
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phase behavior and interfacial properties of a switchable ethoxylated amine surfactant at high temperature and effects on CO2-in-water foams.
    Chen Y; Elhag AS; Reddy PP; Chen H; Cui L; Worthen AJ; Ma K; Quintanilla H; Noguera JA; Hirasaki GJ; Nguyen QP; Biswal SL; Johnston KP
    J Colloid Interface Sci; 2016 May; 470():80-91. PubMed ID: 26930543
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of Asphaltenes in the Properties of Liquid-Liquid Interface between Water and Linear Saturated Hydrocarbons.
    Santos D; Souza W; Santana C; Lourenço E; Santos A; Nele M
    ACS Omega; 2018 Apr; 3(4):3851-3856. PubMed ID: 31458626
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of nonionic surfactants on the surface and interfacial film properties of asphaltenes investigated by Langmuir balance and Brewster angle microscopy.
    Fan Y; Simon S; Sjöblom J
    Langmuir; 2010 Jul; 26(13):10497-505. PubMed ID: 20536160
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rheology of asphaltene-toluene/water interfaces.
    Sztukowski DM; Yarranton HW
    Langmuir; 2005 Dec; 21(25):11651-8. PubMed ID: 16316096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.