These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 38619038)

  • 1. Fourteen years of cellular deconvolution: methodology, applications, technical evaluation and outstanding challenges.
    Nguyen H; Nguyen H; Tran D; Draghici S; Nguyen T
    Nucleic Acids Res; 2024 May; 52(9):4761-4783. PubMed ID: 38619038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous pseudobulk simulation enables realistic benchmarking of cell-type deconvolution methods.
    Hu M; Chikina M
    Genome Biol; 2024 Jul; 25(1):169. PubMed ID: 38956606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge.
    Chen C; Leung YY; Ionita M; Wang LS; Li M
    Bioinformatics; 2022 Sep; 38(19):4530-4536. PubMed ID: 35980155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets.
    Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
    Sang-Aram C; Browaeys R; Seurinck R; Saeys Y
    Elife; 2024 May; 12():. PubMed ID: 38787371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRMC: a fast and robust method for the imputation of scRNA-seq data.
    Wu H; Wang X; Chu M; Xiang R; Zhou K
    RNA Biol; 2021 Oct; 18(sup1):172-181. PubMed ID: 34459719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data.
    Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-deconvolution of bulk and single-cell RNA-seq data with application to metastatic progression in breast cancer.
    Lei H; Guo XA; Tao Y; Ding K; Fu X; Oesterreich S; Lee AV; Schwartz R
    Bioinformatics; 2022 Jun; 38(Suppl 1):i386-i394. PubMed ID: 35758822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data.
    Yu L; Cao Y; Yang JYH; Yang P
    Genome Biol; 2022 Feb; 23(1):49. PubMed ID: 35135612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data.
    Wang C; Lin Y; Li S; Guan J
    BMC Genomics; 2024 Sep; 25(1):875. PubMed ID: 39294558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scHD4E: Novel ensemble learning-based differential expression analysis method for single-cell RNA-sequencing data.
    Biswas B; Kumar N; Sugimoto M; Hoque MA
    Comput Biol Med; 2024 Aug; 178():108769. PubMed ID: 38897145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition.
    Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology.
    Ding J; Li L; Lu Q; Venegas J; Wang Y; Wu L; Jin W; Wen H; Liu R; Tang W; Dai X; Li Z; Zuo W; Chang Y; Lei YL; Shang L; Danaher P; Xie Y; Tang J
    J Comput Biol; 2024 Sep; 31(9):871-885. PubMed ID: 39117342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ranking of cell clusters in a single-cell RNA-sequencing analysis framework using prior knowledge.
    Oulas A; Savva K; Karathanasis N; Spyrou GM
    PLoS Comput Biol; 2024 Apr; 20(4):e1011550. PubMed ID: 38635836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks.
    Li Y; Luo Y
    Genome Biol; 2024 Aug; 25(1):206. PubMed ID: 39103939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments.
    Tian L; Dong X; Freytag S; LĂȘ Cao KA; Su S; JalalAbadi A; Amann-Zalcenstein D; Weber TS; Seidi A; Jabbari JS; Naik SH; Ritchie ME
    Nat Methods; 2019 Jun; 16(6):479-487. PubMed ID: 31133762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Accurate Estimation of Cell Type Abundance in Bulk Tissues Based on Single-Cell Reference and Domain Adaptive Matching.
    Guo X; Huang Z; Ju F; Zhao C; Yu L
    Adv Sci (Weinh); 2024 Feb; 11(7):e2306329. PubMed ID: 38072669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.