These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38619080)

  • 1. Infrared bands of neutral gas-phase carbon clusters in a broad spectral range.
    Ferrari P; Lemmens AK; Redlich B
    Phys Chem Chem Phys; 2024 Apr; 26(16):12324-12330. PubMed ID: 38619080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications.
    Allamandola LJ; Tielens AG; Barker JR
    Astrophys J Suppl Ser; 1989 Dec; 71():733-75. PubMed ID: 11542189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas-Phase Production of Hydroxylated Silicon Oxide Cluster Cations: Structure, Infrared Spectroscopy, and Astronomical Relevance.
    de Donato AA; Ghejan BA; Bakker JM; Bernhardt TM; Bromley ST; Lang SM
    ACS Earth Space Chem; 2024 Jun; 8(6):1154-1164. PubMed ID: 38919856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photofragmentation of corannulene (C
    Sundararajan P; Candian A; Kamer J; Linnartz H; Tielens AGGM
    Phys Chem Chem Phys; 2024 Jul; 26(28):19332-19348. PubMed ID: 38966905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fullerenes in Space.
    Maier JP; Campbell EK
    Angew Chem Int Ed Engl; 2017 Apr; 56(18):4920-4929. PubMed ID: 28070989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic absorption and resonance Raman spectra of large linear carbon clusters isolated in solid argon.
    Szczepanski J; Fuller J; Ekern S; Vala M
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):775-86. PubMed ID: 11345253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio infrared vibrational modes for neutral and charged small fullerenes (C20, C24, C26, C28, C30 and C60).
    Adjizian JJ; Vlandas A; Rio J; Charlier JC; Ewels CP
    Philos Trans A Math Phys Eng Sci; 2016 Sep; 374(2076):. PubMed ID: 27501975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspective: C
    Campbell EK; Maier JP
    J Chem Phys; 2017 Apr; 146(16):160901. PubMed ID: 28456192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway to the identification of C60+ in diffuse interstellar clouds.
    Maier JP; Campbell EK
    Philos Trans A Math Phys Eng Sci; 2016 Sep; 374(2076):. PubMed ID: 27501976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Spectroscopy of Small Carbon Clusters from Electron-Impact Fragmentation and Ionization of Fullerene-C
    Strelnikov DV; Link M; Weippert J; Kappes MM
    J Phys Chem A; 2019 Jun; 123(25):5325-5333. PubMed ID: 31150229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared emission spectra of candidate interstellar aromatic molecules.
    Cook DJ; Schlemmer S; Balucani N; Wagner DR; Steiner B; Saykally RJ
    Nature; 1996 Mar; 380(6571):227-9. PubMed ID: 8637570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of organic matter in interstellar grains.
    Pendleton YJ
    Orig Life Evol Biosph; 1997 Jun; 27(1-3):53-78. PubMed ID: 9150567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mid infrared emission spectroscopy of carbon plasma.
    Nemes L; Brown EE; S-C Yang C; Hommerich U
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():145-9. PubMed ID: 27428600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas-phase electronic spectra of HC
    Marlton SJP; Liu C; Watkins P; Bieske EJ
    Phys Chem Chem Phys; 2024 Apr; 26(16):12306-12315. PubMed ID: 38623876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared Spectral Signatures of Nucleobases in Interstellar Ices I: Purines.
    Rosa CA; Bergantini A; Herczku P; Mifsud DV; Lakatos G; Kovács STS; Sulik B; Juhász Z; Ioppolo S; Quitián-Lara HM; Mason NJ; Lage C
    Life (Basel); 2023 Nov; 13(11):. PubMed ID: 38004348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size distribution of polycyclic aromatic hydrocarbons in space: an old new light on the 11.2/3.3 μm intensity ratio.
    Lemmens AK; Mackie CJ; Candian A; Lee TMJ; Tielens AGGM; Rijs AM; Buma WJ
    Faraday Discuss; 2023 Sep; 245(0):380-390. PubMed ID: 37294543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory studies of the newly discovered infrared band at 4705.2 cm-1 (2.1253 micrometers) in the spectrum of Io: the tentative identification of CO2.
    Sandford SA; Salama F; Allamandola LJ; Trafton LM; Lester DF; Ramseyer TF
    Icarus; 1991; 91():125-44. PubMed ID: 11538104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal.
    Salama F; Bakes EL; Allamandola LJ; Tielens AG
    Astrophys J; 1996 Feb; 458(2 Pt 1):621-36. PubMed ID: 11538558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of hydrogen bond networks formed by a few tens of methanol molecules in the gas phase: size-selective infrared spectroscopy of neutral and protonated methanol clusters.
    Kobayashi T; Shishido R; Mizuse K; Fujii A; Kuo JL
    Phys Chem Chem Phys; 2013 Jun; 15(24):9523-30. PubMed ID: 23673901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Buckminsterfullerene emission in the diffuse interstellar medium.
    Berné O; Cox NLJ; Mulas G; Joblin C
    Astron Astrophys; 2017 Sep; 605():. PubMed ID: 28867822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.