These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38619249)

  • 1. The application of the "inverse problem" method for constructing confining potentials that make N-soliton waveforms exact solutions in the Gross-Pitaevskii equation.
    Cooper F; Khare A; Dawson JF; Charalampidis EG; Saxena A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38619249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniform-density Bose-Einstein condensates of the Gross-Pitaevskii equation found by solving the inverse problem for the confining potential.
    Cooper F; Khare A; Dawson JF; Charalampidis EG; Saxena A
    Phys Rev E; 2023 Jun; 107(6-1):064202. PubMed ID: 37464684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation.
    Wang H; Zhou Q; Liu W
    J Adv Res; 2022 May; 38():179-190. PubMed ID: 35572394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation, propagation, and excitation of matter solitons and rogue waves in chiral BECs with a current nonlinearity trapped in external potentials.
    Song J; Yan Z
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37870999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and Nonlinear Bullets of the Bogoliubov-de Gennes Excitations.
    Kumar S; Perego AM; Staliunas K
    Phys Rev Lett; 2017 Jan; 118(4):044103. PubMed ID: 28186803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stationary solutions for the 1+1 nonlinear Schrödinger equation modeling attractive Bose-Einstein condensates in small potentials.
    Mallory K; Van Gorder RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013204. PubMed ID: 24580353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable nonautonomous localized waves and dynamics for a quasi-1D Gross-Pitaevskii equation in Bose-Einstein condensations with attractive interaction.
    Wang H; Yang H; Tian Y; Liu W
    Chaos; 2024 May; 34(5):. PubMed ID: 38722729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stationary solutions for the 1+1 nonlinear Schrödinger equation modeling repulsive Bose-Einstein condensates in small potentials.
    Mallory K; Van Gorder RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013205. PubMed ID: 23944574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional superfluid flows in inhomogeneous Bose-Einstein condensates.
    Yan Z; Konotop VV; Yulin AV; Liu WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016601. PubMed ID: 22400689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stationary solutions for the nonlinear Schrödinger equation modeling three-dimensional spherical Bose-Einstein condensates in general potentials.
    Mallory K; Van Gorder RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013201. PubMed ID: 26274295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inverse problem for the Gross-Pitaevskii equation.
    Malomed BA; Stepanyants YA
    Chaos; 2010 Mar; 20(1):013130. PubMed ID: 20370285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-layer Bose-Einstein condensates: A quantum phase transition in the transverse direction, and reduction to two dimensions.
    Dos Santos MCP; Malomed BA; Cardoso WB
    Phys Rev E; 2020 Oct; 102(4-1):042209. PubMed ID: 33212641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obstruction to ergodicity in nonlinear Schrödinger equations with resonant potentials.
    Biasi A; Evnin O; Malomed BA
    Phys Rev E; 2023 Sep; 108(3-1):034204. PubMed ID: 37849119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breathing modes of repulsive polarons in Bose-Bose mixtures.
    Boudjemâa A; Guebli N; Sekmane M; Khlifa-Karfa S
    J Phys Condens Matter; 2020 Jul; 32(41):. PubMed ID: 32498047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of stationary states in the cubic nonlinear Schrödinger equation: applications to the Bose-Einstein condensate.
    Carr LD; Kutz JN; Reinhardt WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066604. PubMed ID: 11415239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential.
    Liang ZX; Zhang ZD; Liu WM
    Phys Rev Lett; 2005 Feb; 94(5):050402. PubMed ID: 15783615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piecewise linear emulator of the nonlinear Schrödinger equation and the resulting analytic solutions for Bose-Einstein condensates.
    Theodorakis S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066701. PubMed ID: 16241374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation.
    Atre R; Panigrahi PK; Agarwal GS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056611. PubMed ID: 16803061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matter-wave solutions in Bose-Einstein condensates with harmonic and Gaussian potentials.
    Yan Z; Jiang D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056608. PubMed ID: 23004896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of repulsive Bose-Einstein condensates in a periodic potential.
    Bronski JC; Carr LD; Deconinck B; Kutz JN; Promislow K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036612. PubMed ID: 11308793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.