These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38619254)

  • 1. Detection and Quantification of Mono-Rhamnolipids and Di-Rhamnolipids Produced by Pseudomonas aeruginosa.
    González-Valdez A; Hernández-Pineda J; Soberón-Chávez G
    J Vis Exp; 2024 Mar; (205):. PubMed ID: 38619254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application.
    Li C; Wang Y; Zhou L; Cui Q; Sun W; Yang J; Su H; Zhao F
    Lett Appl Microbiol; 2024 Feb; 77(2):. PubMed ID: 38366661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production.
    Grosso-Becerra MV; González-Valdez A; Granados-Martínez MJ; Morales E; Servín-González L; Méndez JL; Delgado G; Morales-Espinosa R; Ponce-Soto GY; Cocotl-Yañez M; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9995-10004. PubMed ID: 27566690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors.
    Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications.
    Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG
    Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous production of rhamnolipids in Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 based on the endogenous production of N-acyl-homoserine lactones.
    González-Valdez A; Escalante A; Soberón-Chávez G
    Microb Biotechnol; 2024 Jan; 17(1):e14377. PubMed ID: 38041625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon source effects on the mono/dirhamnolipid ratio produced by Pseudomonas aeruginosa L05, a new human respiratory isolate.
    Nicolò MS; Cambria MG; Impallomeni G; Rizzo MG; Pellicorio C; Ballistreri A; Guglielmino SPP
    N Biotechnol; 2017 Oct; 39(Pt A):36-41. PubMed ID: 28587884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pantoea sp. P37 as a novel nonpathogenic host for the heterologous production of rhamnolipids.
    Nawrath MM; Ottenheim C; Wu JC; Zimmermann W
    Microbiologyopen; 2020 May; 9(5):e1019. PubMed ID: 32113194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry.
    Zhao F; Yuan M; Lei L; Li C; Xu X
    Bioresour Technol; 2021 Mar; 323():124605. PubMed ID: 33388600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis.
    Rahim R; Ochsner UA; Olvera C; Graninger M; Messner P; Lam JS; Soberón-Chávez G
    Mol Microbiol; 2001 May; 40(3):708-18. PubMed ID: 11359576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant.
    Wild M; Caro AD; Hernández AL; Miller RM; Soberón-Chávez G
    FEMS Microbiol Lett; 1997 Aug; 153(2):279-85. PubMed ID: 9271853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibiofilm effect of mono-rhamnolipids and di-rhamnolipids on carbon steel submitted to oil produced water.
    Rocha VAL; de Castilho LVA; Castro RPV; Teixeira DB; Magalhães AV; Abreu FA; Cypriano JBS; Gomez JGC; Freire DMG
    Biotechnol Prog; 2021 May; 37(3):e3131. PubMed ID: 33511791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overproduction of rhamnolipids in Pseudomonas aeruginosa PA14 by redirection of the carbon flux from polyhydroxyalkanoate synthesis and overexpression of the rhlAB-R operon.
    Gutiérrez-Gómez U; Soto-Aceves MP; Servín-González L; Soberón-Chávez G
    Biotechnol Lett; 2018 Dec; 40(11-12):1561-1566. PubMed ID: 30264296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Yield Di-Rhamnolipid Production by
    Li Z; Zhang Y; Lin J; Wang W; Li S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically-engineered Escherichia coli.
    Du J; Zhang A; Hao J; Wang J
    Biotechnol Lett; 2017 Jul; 39(7):1041-1048. PubMed ID: 28374071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Construction of mono/di-rhamnolipid ratios-manipulable strains and characterization of their corresponding surfactants' activity].
    Zhao M; Zheng Y; Yu H; Ma L
    Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):786-798. PubMed ID: 38545977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new assay for rhamnolipid detection-important virulence factors of Pseudomonas aeruginosa.
    Laabei M; Jamieson WD; Lewis SE; Diggle SP; Jenkins AT
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7199-209. PubMed ID: 24974281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa.
    Zhao F; Shi R; Ma F; Han S; Zhang Y
    Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of rhamnolipids by Pseudomonas aeruginosa.
    Soberón-Chávez G; Lépine F; Déziel E
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):718-25. PubMed ID: 16160828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.