These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38619291)

  • 1. Natural products from Xenorhabdus and Photorhabdus show promise as biolarvicides against Aedes albopictus.
    Touray M; Ulug D; Gulsen SH; Cimen H; Hazir C; Bode HB; Hazir S
    Pest Manag Sci; 2024 Sep; 80(9):4231-4242. PubMed ID: 38619291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A taste of a toxin paradise: Xenorhabdus and Photorhabdus bacterial secondary metabolites against Aedes aegypti larvae and eggs.
    Ulug D; Touray M; Hazal Gulsen S; Cimen H; Hazir C; Bode HB; Hazir S
    J Invertebr Pathol; 2024 Jul; 205():108126. PubMed ID: 38734162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Larvicidal activity of Photorhabdus and Xenorhabdus bacteria isolated from insect parasitic nematodes against Aedes aegypti and Aedes albopictus.
    Subkrasae C; Ardpairin J; Dumidae A; Janthu P; Muangpat P; Polseela R; Tandhavanant S; Thanwisai A; Vitta A
    Acta Trop; 2022 Nov; 235():106668. PubMed ID: 36030882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review.
    da Silva WJ; Pilz-Júnior HL; Heermann R; da Silva OS
    Parasit Vectors; 2020 Jul; 13(1):376. PubMed ID: 32727530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae).
    Luiz Rosa da Silva J; Undurraga Schwalm F; Eugênio Silva C; da Costa M; Heermann R; Santos da Silva O
    J Econ Entomol; 2017 Apr; 110(2):378-385. PubMed ID: 28062794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii.
    Cimen H; Touray M; Gulsen SH; Erincik O; Wenski SL; Bode HB; Shapiro-Ilan D; Hazir S
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5517-5528. PubMed ID: 34250572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti.
    Fukruksa C; Yimthin T; Suwannaroj M; Muangpat P; Tandhavanant S; Thanwisai A; Vitta A
    Parasit Vectors; 2017 Sep; 10(1):440. PubMed ID: 28934970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae).
    da Silva OS; Prado GR; da Silva JL; Silva CE; da Costa M; Heermann R
    Parasitol Res; 2013 Aug; 112(8):2891-6. PubMed ID: 23728731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acaricidal effect of cell-free supernatants from Xenorhabdus and Photorhabdus bacteria against Tetranychus urticae (Acari: Tetranychidae).
    Eroglu C; Cimen H; Ulug D; Karagoz M; Hazir S; Cakmak I
    J Invertebr Pathol; 2019 Jan; 160():61-66. PubMed ID: 30528928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mixture of Bacillus thuringiensis subsp. israelensis With Xenorhabdus nematophila -Cultured Broth Enhances Toxicity Against Mosquitoes Aedes albopictus and Culex pipiens pallens (Diptera: Culicidae).
    Park Y; Kyo Jung J; Kim Y
    J Econ Entomol; 2016 Mar; 109(3):1086-1093. PubMed ID: 27018440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The deterrent ability of Xenorhabdus nematophila and Photorhabdus laumondii compounds as a potential novel tool for Lobesia botrana (Lepidoptera: Tortricidae) management.
    Vicente-Díez I; Pou A; Campos-Herrera R
    J Invertebr Pathol; 2023 Jun; 198():107911. PubMed ID: 36921888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus.
    Yooyangket T; Muangpat P; Polseela R; Tandhavanant S; Thanwisai A; Vitta A
    PLoS One; 2018; 13(4):e0195681. PubMed ID: 29641570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocontrol potential of cell suspensions and cell-free superntants of different Xenorhabdus and Photorhabdus bacteria against the different larval instars of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae).
    Ünal M; Yüksel E; Canhilal R
    Exp Parasitol; 2022 Nov; 242():108394. PubMed ID: 36179855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of selenium nanoparticles using cell-free extract of Xenorhabdus cabanillasii GU480990 and their potential mosquito larvicidal properties against yellow fever mosquito Aedes aegypti.
    Raja RK; Kumar Seetharaman P; Kalidass B; Ananth S; Bo L; Kamaraj C; Cimen H; Hazir S
    J Invertebr Pathol; 2024 Mar; 203():108045. PubMed ID: 38135245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specificity and putative mode of action of a mosquito larvicidal toxin from the bacterium Xenorhabdus innexi.
    Kim IH; Ensign J; Kim DY; Jung HY; Kim NR; Choi BH; Park SM; Lan Q; Goodman WG
    J Invertebr Pathol; 2017 Oct; 149():21-28. PubMed ID: 28712711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nematode-Associated Bacteria: Production of Antimicrobial Agent as a Presumptive Nominee for Curing Endodontic Infections Caused by
    Donmez Ozkan H; Cimen H; Ulug D; Wenski S; Yigit Ozer S; Telli M; Aydin N; Bode HB; Hazir S
    Front Microbiol; 2019; 10():2672. PubMed ID: 31824457
    [No Abstract]   [Full Text] [Related]  

  • 17. Recombinant
    Deng S-Q; Li N; Yang X-K; Lu H-Z; Liu J-H; Peng Z-Y; Wang L-M; Zhang M; Zhang C; Chen C
    Microbiol Spectr; 2024 Jul; 12(7):e0379223. PubMed ID: 38809029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insecticide susceptibility of Aedes albopictus and Ae. aegypti from Brazil and the Swiss-Italian border region.
    Suter T; Crespo MM; de Oliveira MF; de Oliveira TSA; de Melo-Santos MAV; de Oliveira CMF; Ayres CFJ; Barbosa RMR; Araújo AP; Regis LN; Flacio E; Engeler L; Müller P; Silva-Filha MHNL
    Parasit Vectors; 2017 Sep; 10(1):431. PubMed ID: 28927441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical composition and larvicidal activities of Azolla pinnata extracts against Aedes (Diptera:Culicidae).
    Ravi R; Zulkrnin NSH; Rozhan NN; Nik Yusoff NR; Mat Rasat MS; Ahmad MI; Ishak IH; Amin MFM
    PLoS One; 2018; 13(11):e0206982. PubMed ID: 30399167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver nanoparticles enhance the larvicidal toxicity of Photorhabdus and Xenorhabdus bacterial toxins: an approach to control the filarial vector, Culex pipiens.
    El-Sadawy HA; El Namaky AH; Hafez EE; Baiome BA; Ahmed AM; Ashry HM; Ayaad TH
    Trop Biomed; 2018 Jun; 35(2):392-407. PubMed ID: 33601813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.