BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 38619433)

  • 1. Inspiring basic and applied research in genome integrity mechanisms: Dedication to Samuel H. Wilson.
    Yan S; Gaddameedhi S; Sobol RW
    Environ Mol Mutagen; 2024 Apr; 65 Suppl 1(Suppl 1):4-8. PubMed ID: 38619433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent insights into eukaryotic double-strand DNA break repair unveiled by single-molecule methods.
    De Bragança S; Dillingham MS; Moreno-Herrero F
    Trends Genet; 2023 Dec; 39(12):924-940. PubMed ID: 37806853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An insight into understanding the coupling between homologous recombination mediated DNA repair and chromatin remodeling mechanisms in plant genome: an update.
    Banerjee S; Roy S
    Cell Cycle; 2021 Sep; 20(18):1760-1784. PubMed ID: 34437813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA polymerase θ (POLQ), double-strand break repair, and cancer.
    Wood RD; Doublié S
    DNA Repair (Amst); 2016 Aug; 44():22-32. PubMed ID: 27264557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of sequence contexts that favor alternative end joining at Cas9-induced double-strand breaks.
    Hanscom T; Woodward N; Batorsky R; Brown AJ; Roberts SA; McVey M
    Nucleic Acids Res; 2022 Jul; 50(13):7465-7478. PubMed ID: 35819195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct mechanisms of nonhomologous end joining in the repair of site-directed chromosomal breaks with noncomplementary and complementary ends.
    Willers H; Husson J; Lee LW; Hubbe P; Gazemeier F; Powell SN; Dahm-Daphi J
    Radiat Res; 2006 Oct; 166(4):567-74. PubMed ID: 17007549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An introduction for the special issue on environmental health and genome integrity.
    Yan S; Vaziri C
    Environ Mol Mutagen; 2020 Aug; 61(7):660-663. PubMed ID: 32683747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional roles and cancer variants of the bifunctional glycosylase NEIL2.
    Hua AB; Sweasy JB
    Environ Mol Mutagen; 2024 Apr; 65 Suppl 1():40-56. PubMed ID: 37310399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Templated Insertions: A Smoking Gun for Polymerase Theta-Mediated End Joining.
    Schimmel J; van Schendel R; den Dunnen JT; Tijsterman M
    Trends Genet; 2019 Sep; 35(9):632-644. PubMed ID: 31296341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodologies for detecting environmentally induced DNA damage and repair.
    Li W; Sancar A
    Environ Mol Mutagen; 2020 Aug; 61(7):664-679. PubMed ID: 32083352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins.
    Dutta A; Yang C; Sengupta S; Mitra S; Hegde ML
    Cell Mol Life Sci; 2015 May; 72(9):1679-98. PubMed ID: 25575562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)-initiated nonhomologous end joining (NHEJ) in cortical neurons.
    Yang JL; Chen WY; Mukda S; Yang YR; Sun SF; Chen SD
    Neuropathol Appl Neurobiol; 2020 Jun; 46(4):375-390. PubMed ID: 31628877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic Scars Generated by Polymerase Theta Reveal the Versatile Mechanism of Alternative End-Joining.
    van Schendel R; van Heteren J; Welten R; Tijsterman M
    PLoS Genet; 2016 Oct; 12(10):e1006368. PubMed ID: 27755535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of DNA damage and repair: progress in plants.
    Tuteja N; Singh MB; Misra MK; Bhalla PL; Tuteja R
    Crit Rev Biochem Mol Biol; 2001; 36(4):337-97. PubMed ID: 11563486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens.
    Huang J; Cook DE
    FEMS Microbiol Rev; 2022 Nov; 46(6):. PubMed ID: 35810003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age.
    Vaidya A; Mao Z; Tian X; Spencer B; Seluanov A; Gorbunova V
    PLoS Genet; 2014 Jul; 10(7):e1004511. PubMed ID: 25033455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA repair mechanisms in dividing and non-dividing cells.
    Iyama T; Wilson DM
    DNA Repair (Amst); 2013 Aug; 12(8):620-36. PubMed ID: 23684800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress.
    Jiang Y
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of replication domains on genome-wide UV-induced DNA damage and repair.
    Huang Y; Azgari C; Yin M; Chiou YY; Lindsey-Boltz LA; Sancar A; Hu J; Adebali O
    PLoS Genet; 2022 Sep; 18(9):e1010426. PubMed ID: 36155646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.