BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38619646)

  • 1. Integrating Multi-omics Data for Alzheimer's Disease to Explore Its Biomarkers Via the Hypergraph-Regularized Joint Deep Semi-Non-Negative Matrix Factorization Algorithm.
    Tu K; Zhou W; Kong S
    J Mol Neurosci; 2024 Apr; 74(2):43. PubMed ID: 38619646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. JDSNMF: Joint Deep Semi-Non-Negative Matrix Factorization for Learning Integrative Representation of Molecular Signals in Alzheimer's Disease.
    Moon S; Lee H
    J Pers Med; 2021 Jul; 11(8):. PubMed ID: 34442330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scMNMF: a novel method for single-cell multi-omics clustering based on matrix factorization.
    Qiu Y; Guo D; Zhao P; Zou Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of Imaging Genomics Data for the Study of Alzheimer's Disease Using Joint-Connectivity-Based Sparse Nonnegative Matrix Factorization.
    Wei K; Kong W; Wang S
    J Mol Neurosci; 2022 Feb; 72(2):255-272. PubMed ID: 34410569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HyperTMO: a trusted multi-omics integration framework based on hypergraph convolutional network for patient classification.
    Wang H; Lin K; Zhang Q; Shi J; Song X; Wu J; Zhao C; He K
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38530977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypergraph-regularized multimodal learning by graph diffusion for imaging genetics based Alzheimer's Disease diagnosis.
    Wang M; Shao W; Huang S; Zhang D
    Med Image Anal; 2023 Oct; 89():102883. PubMed ID: 37467641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering.
    Lan W; Liu M; Chen J; Ye J; Zheng R; Zhu X; Peng W
    Methods; 2024 Feb; 222():1-9. PubMed ID: 38128706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of orthogonal sparse joint non-negative matrix factorization based on connectivity in Alzheimer's disease research.
    Kong W; Xu F; Wang S; Wei K; Wen G; Yu Y
    Math Biosci Eng; 2023 Mar; 20(6):9923-9947. PubMed ID: 37322917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks.
    Wang J; Liao N; Du X; Chen Q; Wei B
    BMC Genomics; 2024 Jan; 25(1):86. PubMed ID: 38254021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnosis of Alzheimer's disease using hypergraph p-Laplacian regularized multi-task feature learning.
    Ban Y; Lao H; Li B; Su W; Zhang X
    J Biomed Inform; 2023 Apr; 140():104326. PubMed ID: 36870585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data.
    Kong W; Mou X; Hu X
    BMC Bioinformatics; 2011; 12 Suppl 5(Suppl 5):S7. PubMed ID: 21989140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omics-based biomarkers discovery for Alzheimer's disease.
    Aerqin Q; Wang ZT; Wu KM; He XY; Dong Q; Yu JT
    Cell Mol Life Sci; 2022 Nov; 79(12):585. PubMed ID: 36348101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Associating brain imaging phenotypes and genetic risk factors
    Zhuang J; Tian J; Xiong X; Li T; Chen Z; Chen R; Chen J; Li X
    Front Aging Neurosci; 2023; 15():1052783. PubMed ID: 36936501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of Imaging Genetic Biomarkers of Alzheimer's Disease Based on a Machine Learning Method.
    Wang Y; Wang X
    J Integr Neurosci; 2024 Apr; 23(4):81. PubMed ID: 38682217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized matrix factorization based on weighted hypergraph learning for microbe-drug association prediction.
    Ma Y; Liu Q
    Comput Biol Med; 2022 Jun; 145():105503. PubMed ID: 35427986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery.
    Bansal B; Sahoo A
    Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering single-cell multi-omics data via graph regularized multi-view ensemble learning.
    Chen F; Zou G; Wu Y; Ou-Yang L
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38547401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of RNA molecules data with prior-knowledge driven Joint Deep Semi-Negative Matrix Factorization for heart failure study.
    Ma Z; Chen B; Zhang Y; Zeng J; Tao J; Hu Y
    Front Genet; 2022; 13():967363. PubMed ID: 36299595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Longitudinal Phenotype-Genotype Association Study Based on Deep Feature Extraction and Hypergraph Models for Alzheimer's Disease.
    Kong W; Xu Y; Wang S; Wei K; Wen G; Yu Y; Zhu Y
    Biomolecules; 2023 Apr; 13(5):. PubMed ID: 37238598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on omics-based biomarkers discovery for Alzheimer's disease from the bioinformatics perspectives: Statistical approach vs machine learning approach.
    Tan MS; Cheah PL; Chin AV; Looi LM; Chang SW
    Comput Biol Med; 2021 Dec; 139():104947. PubMed ID: 34678481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.