These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38619670)

  • 21. Sir2 is involved in the transcriptional modulation of NHP6A in Saccharomyces cerevisiae.
    Ciuffetta A; Salerno D; Camilloni G; Venditti S
    Biochem Biophys Res Commun; 2015 May; 461(1):42-6. PubMed ID: 25858320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyalthia longifolia leaves methanolic extract targets entry and budding of viruses-an in vitro experimental study against paramyxoviruses.
    Yadav P; Choudhury S; Barua S; Khandelwal N; Kumar N; Shukla A; Garg SK
    J Ethnopharmacol; 2020 Feb; 248():112279. PubMed ID: 31600562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enforcement of a lifespan-sustaining distribution of Sir2 between telomeres, mating-type loci, and rDNA repeats by Rif1.
    Salvi JS; Chan JN; Pettigrew C; Liu TT; Wu JD; Mekhail K
    Aging Cell; 2013 Feb; 12(1):67-75. PubMed ID: 23082874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase) is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination.
    Ringel AE; Ryznar R; Picariello H; Huang KL; Lazarus AG; Holmes SG
    PLoS Genet; 2013; 9(10):e1003871. PubMed ID: 24146631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity.
    Vall-Llaura N; Mir N; Garrido L; Vived C; Cabiscol E
    Redox Biol; 2019 Jun; 24():101229. PubMed ID: 31153040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast.
    Hannan A; Abraham NM; Goyal S; Jamir I; Priyakumar UD; Mishra K
    Nucleic Acids Res; 2015 Dec; 43(21):10213-26. PubMed ID: 26319015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of telomere silencing by the core histones-autophagy-Sir2 axis.
    Mei Q; Yu Q; Li X; Chen J; Yu X
    Life Sci Alliance; 2023 Mar; 6(3):. PubMed ID: 36585257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycerol 3-phosphate dehydrogenase regulates heat shock response in Saccharomyces cerevisiae.
    Pallapati AR; Prasad S; Roy I
    Biochim Biophys Acta Mol Cell Res; 2022 May; 1869(5):119238. PubMed ID: 35150808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ARV1 deficiency induces lipid bilayer stress and enhances rDNA stability by activating the unfolded protein response in Saccharomyces cerevisiae.
    Hong S; Lee HG; Huh WK
    J Biol Chem; 2024 May; 300(5):107273. PubMed ID: 38588806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing.
    Orlandi I; Bettiga M; Alberghina L; Nyström T; Vai M
    Biochim Biophys Acta; 2010 May; 1803(5):630-8. PubMed ID: 20211662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sir2 plays a key role in cell fate determination upon SAPK activation.
    Vendrell A; Posas F
    Aging (Albany NY); 2011 Dec; 3(12):1163-8. PubMed ID: 22245992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration.
    McClure JM; Wierman MB; Maqani N; Smith JS
    J Biol Chem; 2012 Jun; 287(25):20957-66. PubMed ID: 22539348
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Liu J; Mosser L; Botanch C; François JM; Capp JP
    G3 (Bethesda); 2020 Sep; 10(9):3435-3443. PubMed ID: 32727919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast.
    Rodriguez ME; Orozco H; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2014 Sep; 14(6):845-57. PubMed ID: 24920206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple pathways regulating the calorie restriction response in yeast.
    Rahat O; Maoz N; Cohen HY
    J Gerontol A Biol Sci Med Sci; 2011 Feb; 66(2):163-9. PubMed ID: 21081478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae.
    Kruegel U; Robison B; Dange T; Kahlert G; Delaney JR; Kotireddy S; Tsuchiya M; Tsuchiyama S; Murakami CJ; Schleit J; Sutphin G; Carr D; Tar K; Dittmar G; Kaeberlein M; Kennedy BK; Schmidt M
    PLoS Genet; 2011 Sep; 7(9):e1002253. PubMed ID: 21931558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nicotinamide induces Fob1-dependent plasmid integration into chromosome XII in Saccharomyces cerevisiae.
    Tripathi K; Matmati N; Zzaman S; Westwater C; Mohanty BK
    FEMS Yeast Res; 2012 Dec; 12(8):949-57. PubMed ID: 22909099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sir2 links the unfolded protein response and the heat shock response in a stress response network.
    Weindling E; Bar-Nun S
    Biochem Biophys Res Commun; 2015 Feb; 457(3):473-8. PubMed ID: 25600811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A pharmaco-epistasis strategy reveals a new cell size controlling pathway in yeast.
    Moretto F; Sagot I; Daignan-Fornier B; Pinson B
    Mol Syst Biol; 2013 Nov; 9():707. PubMed ID: 24217298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure Characterization and Action Mechanism of an Antiaging New Compound from
    Farooq U; Pan Y; Lin Y; Wang Y; Osada H; Xiang L; Qi J
    Oxid Med Cell Longev; 2019; 2019():5459862. PubMed ID: 31198492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.