BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38619863)

  • 1. One-Pot Synthesis of High-Capacity Sulfur Cathodes via In-Situ Polymerization of a Porous Imine-Based Polymer.
    Li G; Liu Y; Schultz T; Exner M; Muydinov R; Wang H; Scheurell K; Huang J; Szymoniak P; Pinna N; Koch N; Adelhelm P; Bojdys MJ
    Angew Chem Int Ed Engl; 2024 Jul; 63(28):e202400382. PubMed ID: 38619863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing Binder- and Carbon Additive-Free Organosulfur Cathodes Based on Conducting Thiol-Polymers through Electropolymerization for Lithium-Sulfur Batteries.
    Ning J; Yu H; Mei S; Schütze Y; Risse S; Kardjilov N; Hilger A; Manke I; Bande A; Ruiz VG; Dzubiella J; Meng H; Lu Y
    ChemSusChem; 2022 Jul; 15(14):e202200434. PubMed ID: 35524709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic Interlamellar Ion Path in High Sulfur Content Lithium-Montmorillonite Host Enables High-Rate and Stable Lithium-Sulfur Battery.
    Chen W; Lei T; Lv W; Hu Y; Yan Y; Jiao Y; He W; Li Z; Yan C; Xiong J
    Adv Mater; 2018 Aug; ():e1804084. PubMed ID: 30141197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CeF
    Deng N; Ju J; Yan J; Zhou X; Qin Q; Zhang K; Liang Y; Li Q; Kang W; Cheng B
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12626-12638. PubMed ID: 29582987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amylose-Derived Macrohollow Core and Microporous Shell Carbon Spheres as Sulfur Host for Superior Lithium-Sulfur Battery Cathodes.
    Li X; Cheng X; Gao M; Ren D; Liu Y; Guo Z; Shang C; Sun L; Pan H
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10717-10729. PubMed ID: 28233993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the Influence of Diverse Functionalized Carbon Nanotubes as Conductive Fibers on Paper-Based Sulfur Cathodes in Lithium-Sulfur Batteries.
    Ren X; Wu H; Xiao Y; Wu H; Wang H; Li H; Guo Y; Xu P; Yang B; Xiong C
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries.
    Peng H; Wang X; Zhao Y; Tan T; Bakenov Z; Zhang Y
    Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries.
    Sun L; Wang D; Luo Y; Wang K; Kong W; Wu Y; Zhang L; Jiang K; Li Q; Zhang Y; Wang J; Fan S
    ACS Nano; 2016 Jan; 10(1):1300-8. PubMed ID: 26695394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable High-Capacity Elemental Sulfur Cathodes with Simple Process for Lithium Sulfur Batteries.
    Sawada S; Yoshida H; Luski S; Markevich E; Salitra G; Elias Y; Aurbach D
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Honeycomb-Like Nitrogen-Doped Carbon 3D Nanoweb@Li
    Kim Y; Han H; Noh Y; Bae J; Ham MH; Kim WB
    ChemSusChem; 2019 Feb; 12(4):824-829. PubMed ID: 30569512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel melamine-based porous organic polymers: synthesis, characterizations, morphology modifications, and their applications in lithium-sulfur batteries.
    Liu H; Wang J; Sun M; Wang Y; Zhao R; Zhang X; Zhao Y
    Nanotechnology; 2021 Dec; 33(8):. PubMed ID: 34781273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Strategy for the Formulation of High-Energy-Density Cathodes via Porous Carbon for Li-S Batteries.
    Kim DS; Woo SG; Kang CJ; Lee JH; Lee JN; Yu JS; Kim YJ
    ChemSusChem; 2023 May; 16(10):e202202009. PubMed ID: 36577695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single lithium-ion channel polymer binder for stabilizing sulfur cathodes.
    Niu C; Liu J; Qian T; Shen X; Zhou J; Yan C
    Natl Sci Rev; 2020 Feb; 7(2):315-323. PubMed ID: 34692047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloride-Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium-Sulfur Batteries.
    Fan L; Zhuang HL; Zhang K; Cooper VR; Li Q; Lu Y
    Adv Sci (Weinh); 2016 Dec; 3(12):1600175. PubMed ID: 27981007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Encapsulation of Small S
    Hong XJ; Tang XY; Wei Q; Song CL; Wang SY; Dong RF; Cai YP; Si LP
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9435-9443. PubMed ID: 29528216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.