These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38619863)

  • 21. Nanofibers Comprising Interconnected Chain-Like Hollow N-Doped C Nanocages as 3D Free-Standing Cathodes for Li-S Batteries with Super-High Sulfur Content and Lean Electrolyte/Sulfur Ratio.
    Saroha R; Cho JS
    Small Methods; 2022 May; 6(5):e2200049. PubMed ID: 35277949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Regulation of Polysulfides by Anatase/Bronze TiO
    Liu J; Liu Y; Li T; Liang L; Wen S; Zhang Y; Liu G; Ren F; Wang G
    Molecules; 2023 May; 28(11):. PubMed ID: 37298762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance.
    Li W; Zhang Q; Zheng G; Seh ZW; Yao H; Cui Y
    Nano Lett; 2013; 13(11):5534-40. PubMed ID: 24127640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational Designed Mixed-Conductive Sulfur Cathodes for All-Solid-State Lithium Batteries.
    Yue J; Huang Y; Liu S; Chen J; Han F; Wang C
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36066-36071. PubMed ID: 32687320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chitin-derived hierarchical meso- and microporous carbon enables high-rate sulfur cathode of sodium-sulfur batteries.
    Xu H; Zhao X
    ChemSusChem; 2024 Jun; ():e202400757. PubMed ID: 38842481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations.
    Kim A; Dash JK; Patel R
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical Investigations of Sulfur-Decorated Organic Materials as Cathodes for Alkali Batteries.
    Fu Q; Zhao L; Luo X; Hobich J; Döpping D; Rehnlund D; Mutlu H; Dsoke S
    Small; 2024 Jun; 20(24):e2311800. PubMed ID: 38164806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries.
    Zhao C; Amine K; Xu GL
    Acc Chem Res; 2023 Oct; 56(19):2700-2712. PubMed ID: 37728762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Rate Organic Cathode Constructed by Iron-Hexaazatrinaphthalene Tricarboxylic Acid Coordination Polymer for Li-Ion Batteries.
    Wang Y; Qiao Z; Liu K; Yu L; Lv Y; Shi L; Zhao Y; Cao D; Wang Z; Wang S; Yuan S
    Adv Sci (Weinh); 2022 Dec; 9(36):e2205069. PubMed ID: 36354197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Performance Solid-State Lithium-Sulfur Battery Enabled by Multi-Functional Cathode and Flexible Hybrid Solid Electrolyte.
    Hoang HA; Kim D
    Small; 2022 Aug; 18(34):e2202963. PubMed ID: 35908157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Performance Flexible Sulfur Cathodes with Robust Electrode Skeletons Built by a Hierarchical Self-Assembling Slurry.
    Zhang Z; Mo J; Yu P; Feng L; Wang Y; Lu Y; Yang W
    Adv Sci (Weinh); 2022 Sep; 9(26):e2201881. PubMed ID: 35853244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High-Rate, Ultralong-Life Lithium-Sulfur Batteries.
    Zeng S; Li L; Xie L; Zhao D; Wang N; Chen S
    ChemSusChem; 2017 Sep; 10(17):3378-3386. PubMed ID: 28736985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MnO
    Dong W; Meng L; Hong X; Liu S; Shen D; Xia Y; Yang S
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel Cu(II)-based metal-organic framework STAM-1 as a sulfur host for Li-S batteries.
    Niščáková V; Almáši M; Capková D; Kazda T; Čech O; Čudek P; Petruš O; Volavka D; Oriňaková R; Fedorková AS
    Sci Rep; 2024 Apr; 14(1):9232. PubMed ID: 38649384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multidimensional Polycation β-Cyclodextrin Polymer as an Effective Aqueous Binder for High Sulfur Loading Cathode in Lithium-Sulfur Batteries.
    Zeng F; Wang W; Wang A; Yuan K; Jin Z; Yang YS
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26257-65. PubMed ID: 26517299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.
    Zhou G; Yin LC; Wang DW; Li L; Pei S; Gentle IR; Li F; Cheng HM
    ACS Nano; 2013 Jun; 7(6):5367-75. PubMed ID: 23672616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphdiyne-like Porous Organic Framework as a Solid-Phase Sulfur Conversion Cathodic Host for Stable Li-S Batteries.
    Yi Y; Huang W; Tian X; Fang B; Wu Z; Zheng S; Li M; Ma H
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59983-59992. PubMed ID: 34889090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rational Design of an Electron/Ion Dual-Conductive Cathode Framework for High-Performance All-Solid-State Lithium Batteries.
    Wang J; Yan X; Zhang Z; Guo R; Ying H; Han G; Han WQ
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41323-41332. PubMed ID: 32830944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.