These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38619863)

  • 41. Recent Configurational Advances for Solid-State Lithium Batteries Featuring Conversion-Type Cathodes.
    Chiu KC; Chang JK; Su YS
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375134
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries.
    Kim H; Lee J; Ahn H; Kim O; Park MJ
    Nat Commun; 2015 Jun; 6():7278. PubMed ID: 26065407
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In Situ Self-Formed Nanosheet MoS
    Chang U; Lee JT; Yun JM; Lee B; Lee SW; Joh HI; Eom K; Fuller TF
    ACS Nano; 2019 Feb; 13(2):1490-1498. PubMed ID: 30580512
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Rational Reconfiguration of Electrolyte for High-Energy and Long-Life Lithium-Chalcogen Batteries.
    Wang WP; Zhang J; Yin YX; Duan H; Chou J; Li SY; Yan M; Xin S; Guo YG
    Adv Mater; 2020 Jun; 32(23):e2000302. PubMed ID: 32363631
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insights into the Pseudocapacitive Behavior of Sulfurized Polymer Electrodes for Li-S Batteries.
    Sapkota N; Chiluwal S; Parajuli P; Rowland A; Podila R
    Adv Sci (Weinh); 2023 May; 10(15):e2206901. PubMed ID: 36994629
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Siloxane based copolymer sulfur as binder-free cathode for advances lithium-sulfur batteries.
    Ma Y; Zhu M; Li S; Li B
    J Colloid Interface Sci; 2020 Aug; 574():190-196. PubMed ID: 32315866
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.
    Yang X; Zhang L; Zhang F; Huang Y; Chen Y
    ACS Nano; 2014 May; 8(5):5208-15. PubMed ID: 24749945
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Holey Graphene/Ferroelectric/Sulfur Composite Cathodes for High-Capacity Lithium-Sulfur Batteries.
    Zuluaga-Gómez CC; Plaza-Rivera CO; Tripathi B; Katiyar RK; Pradhan DK; Morell G; Lin Y; Correa M; Katiyar RS
    ACS Omega; 2023 Apr; 8(14):13097-13108. PubMed ID: 37065024
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sandwiched Cathodes Assembled from CoS
    Xu J; Yang L; Cao S; Wang J; Ma Y; Zhang J; Lu X
    Adv Sci (Weinh); 2021 Aug; 8(16):e2101019. PubMed ID: 34075724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-Performance Quasi-Solid-State Lithium-Sulfur Battery with a Controllably Solidified Cathode-Electrolyte Interface.
    Li CC; Wang WP; Feng XX; Wang YH; Zhang Y; Zhang J; Zhang L; Zheng JC; Luo Y; Chen Z; Xin S; Guo YG
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19066-19074. PubMed ID: 37036933
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal Coordinated Polymer as Three-Dimensional Network Binder for High Sulfur Loading Cathode of Lithium-Sulfur Battery.
    Gao Q; Shen Z; Guo Z; Li M; Wei J; He J; Zhao Y
    Small; 2023 Jul; 19(28):e2301344. PubMed ID: 36971297
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bottom-Up Construction of Porous Organic Frameworks with Built-In TEMPO as a Cathode for Lithium-Sulfur Batteries.
    Zhou B; Hu X; Zeng G; Li S; Wen Z; Chen L
    ChemSusChem; 2017 Jul; 10(14):2955-2961. PubMed ID: 28557296
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Binder-Free and High-Loading Cathode Realized by Hierarchical Structure for Potassium-Sulfur Batteries.
    Yang K; Kim S; Yang X; Cho M; Lee Y
    Small Methods; 2022 Jan; 6(1):e2100899. PubMed ID: 35041292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New approaches for high energy density lithium-sulfur battery cathodes.
    Evers S; Nazar LF
    Acc Chem Res; 2013 May; 46(5):1135-43. PubMed ID: 23054430
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Supramolecular Complex of C
    Xiang J; Shen W; Guo Z; Meng J; Yuan L; Zhang Y; Cheng Z; Shen Y; Lu X; Huang Y
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14313-14318. PubMed ID: 33881222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium-Sulfur Batteries.
    Shen J; Xu X; Liu J; Liu Z; Li F; Hu R; Liu J; Hou X; Feng Y; Yu Y; Zhu M
    ACS Nano; 2019 Aug; 13(8):8986-8996. PubMed ID: 31356051
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-function hollow nanorod as an efficient sulfur host accelerates sulfur redox reactions for high-performance Li-S batteries.
    Yang Z; Hu Z; Yan G; Li M; Feng Y; Qu X; Zhang X
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):65-75. PubMed ID: 36152581
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries.
    Xu J; Shui J; Wang J; Wang M; Liu HK; Dou SX; Jeon IY; Seo JM; Baek JB; Dai L
    ACS Nano; 2014 Oct; 8(10):10920-30. PubMed ID: 25290080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.